The Physiology and Pathophysiology of IGF-I In the Kidney

  • Raimund Hirschberg
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 343)


Insulin-like growth factor I (IGF-I) is synthesized and released in the nephron1–10 and released into the systemic circulation by the kidneys11,12. Under normal conditions the glomerulus expresses IGF-I mRNA and releases IGF-I peptide1,2. Cell culture studies have shown that glomerular mesangial cells, which are mainly smooth muscle-like cells, express IGF-I13,14. Furthermore, cultured glomerular epithelial cells also release IGF-I (own unpublished observation). Within the nephron IGF-I is expressed in distal tubules and cortical collecting ducts but not in proximal tubules1–5. Scattered proximal tubule cells are positive for IGF-I mRNA by in-situ hybridization, suggesting that very small amounts of IGF-I may be synthesized under normal conditions1. In many tissues, growth hormone is the strongest secretagogue for IGF-I. In distal and collecting tubules the synthesis of IGF-I is growth hormone dependent15,16.


Growth Hormone Glomerular fIltration Rate Glomerular Sclerosis Renal Vascular Resistance Glomerular Hypertrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Matejka, P. Eriksson, B. Carlsson, and E. Jennische, Distribution of IGF-I mRNA and IGF-I binding sites in the rat kidney, Histochem 97:173–180 (1992).CrossRefGoogle Scholar
  2. 2.
    J. Bortz, P. Rotwein, D. DeVol, P. Bechtel, V. Hansen, and M. Hammerman, Focal expression of insulin-like growth factor I in rat kidney collecting duct, J Cell Biol 107:811–819 (1988).PubMedCrossRefGoogle Scholar
  3. 3.
    G. Andersson, A. Skottner, and E. Jennische, Immunocytochemical and biochemical localization of insulin-like growth factor I in the kidney of rats before and after uninephrectomy. Acta Endocrinol (Copenhagen), 119:555–560 (1988).Google Scholar
  4. 4.
    G. Andersson, L. Ericson, and E. Jennische, Ultrastructural localization of IGF-I in the rat kidney; an immuinocytochemical study, Histochem 94:263–267 (1990).CrossRefGoogle Scholar
  5. 5.
    G. Matejka, and E. Jennische, IGF-I binding and IGF-I mRNA expression in the postischemic regenerating rat kidney. Kidney Int, 42:1113–1123 (1992).PubMedCrossRefGoogle Scholar
  6. 6.
    W. Lowe, M. Adamo, H. Werner, C. Roberts, and D. LeRoith, Regulation by fasting of rat insulinlike growth factor I and its receptor; Effects on gene expression and binding, J Clin Invest, 84:619–626 (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    P. McConahey, and J. Dehnel, Preliminary studies of ‘sulfation factor’ production by rat kidney. J Endocrinol, 52:587–588 (1972).CrossRefGoogle Scholar
  8. 8.
    A. D’Ercole, and L. Underwood, Estimation of tissue concentrations of somatomedin C/insulin-like growth factor I, Meth Enzymol, 146:227–233 (1987).PubMedCrossRefGoogle Scholar
  9. 9.
    A. D’Ercole, D. Stiles, and L. Underwood, Tissue concentrations of somatomedin C: Further evidence for multiple sites of synthesis and paracrine and autocrine mechanism of action. Proc Natl Acad Sci USA, 81:935–939 (1984).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Fagin and S. Melmed, Relative increase in insulin-like growth factor I messanger ribonucleic acid levels in compensatory renal hypertrophy. Endocrinology, 120:718–724 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    R. Schimpff, M. Donnadieu, and M. Duval, Serum somatomedin activity measured as sulphation factor in peripheral, hepatic and renal veins of mongrel dogs: Basal levels, Actoa Endocrinol (Copenhagen), 93:67–72 (1980).Google Scholar
  12. 12.
    R. Schimpff, M. Donnadieu, and M. Duval, Serum somatomedin activity measured as sulphation factor in peripheral, hepatic and renal veins of mongrel dogs: Early effects of intravenous injection of growth hormone, Acta Endocrinol (Copenhagen), 93:155–161 (1980).Google Scholar
  13. 13.
    F. Conti, L. Striker, S. Elliot, D. Andreani, and G. Striker, Synthesis and release of insulinlike growth factor I by mesangial cells in culture, Am J Physiol, 255:F1214–F1219 (1988).PubMedGoogle Scholar
  14. 14.
    T. Doi, L. Striker, S. Elliot, F. Conti, and G. Striker, Insulinlike growth factor-1 is a progression factor for human mesangial cells, Am J Pathol, 134:395–404 (1989).PubMedGoogle Scholar
  15. 15.
    S. Rogers, S. Miller, and M. Hammerman, Growth hormone stimulates IGF-I gene expression in isolated rat renal collecting duct, Am J Physiol, 259:F474–479 (1990).PubMedGoogle Scholar
  16. 16.
    S. Miller, P. Rotwein, J. Bortz, P. Bechtel, V. Hansen, S. Rogers, and M. Hammerman, Renal expression of IGF I in hypersomatotropic states, Am J Physiol, 259:F251–F257 (1990).PubMedGoogle Scholar
  17. 17.
    F. Conti, L. Striker, M. Lesniak, K. MacKay, J. Roth, and G. Striker, Studies on binding and mitogenic effect of insulin and insulin-like growth factor I in glomerular mesangial cells, Endocrinology, 122:2788–2795 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    M. Hammerman, and J. Gavin, Binding of IGF-I and IGF-I-stimulated phosphorylation in canine renal basolateral membranes, Am J Physiol, 251:E32–E41 (1986).PubMedGoogle Scholar
  19. 19.
    M. Hammerman, and S. Rogers, Distribution of IGF receptors in the plasma membrane of proximal tubular cells, Am J Physiol, 253:F841–F847 (1987).PubMedGoogle Scholar
  20. 20.
    H. Guler, J. Zapf, and E. Froesch, Short-term metabolic effects of recombinant human insulin-like growth factor I in healthy adults, N Engl J Med 317:137–140 (1987).PubMedCrossRefGoogle Scholar
  21. 21.
    H. Guler, C. Schmid, J. Zapf, and E. Froesch, Effects of recombinant insulin-like growth factor I on insulin secretion and renal function in normal human subjects, Proc Natl Acad Sci USA 86:2868–2872 (1989).PubMedCrossRefGoogle Scholar
  22. 22.
    M. Baxter, and J. Martin, Structure of the M 140,000 growth hormone -dependent insulin-like growth factor binding protein complex: determination by reconstitution and affinity labeling. Proc Natl Acad Sci USA 86:6898–6902 (1989).PubMedCrossRefGoogle Scholar
  23. 23.
    J. Zapf, and E. Froesch, Extrapancreatic tumor hypoglycemia: The role of insulin-like growth factors and insulin-like growth factor binding proteins,in: “Growth hormone and insulin-like growth factor I in human and experimental diabetes,”A. Flyvbjerg, H. Ørskov, and K. Alberti, eds., John Wiley &Sons Ltd, Chichester, 1993.Google Scholar
  24. 24.
    S. Hodgkinson, G. Spencer, J. Bass, S. Davis, and P. Gluckman, Distribution of ciruclating insulinlike growth factor-I (IGF-I) into tissues, Endocrinology, 129:2085–2093 (1991).PubMedCrossRefGoogle Scholar
  25. 25.
    Z. Dai, A. Stiles, B. Moats-Staats, J. Van Wyk, and A. D’Ercole, Interaction of secreted insulinlike growth factor-I (IGF-I) with cell surface receptors is the dominant mechanism of IGF-I’s autocrine actions, J Biol Chem, 267:19565–19571 (1992).PubMedGoogle Scholar
  26. 26.
    D. Ikkos, H. Ljunggren, and R. Luft, Glomerular filtration rate and renal plasma flow in acromegaly, Acta Endocrinol (Copenhagen), 21:226–236 (1956).Google Scholar
  27. 27.
    T. Falkheden, Renal function following hypophysectomy in man, Acta Endocrinol (Copenhagen), 42:571–590 (1963).Google Scholar
  28. 28.
    T. Falkheden, and I. Wickbom, Renal function and kidney size following hypophysectomy in man, Acta Endocrinol (Copenhagen), 48:348–354 (1965).Google Scholar
  29. 29.
    J. Corvilain, M. Abramow, and A. Bergans, Some effects of human growth hormone on renal hemodynamics and on tubular phosphate transport in man, J Clin Invest, 41:1230–1235 (1962).PubMedCrossRefGoogle Scholar
  30. 30.
    H. Gershberg, H. Heinemann, and H. Stumpf, Renal function studies and autopsy report in a patient with gigantism and acromegaly, J Clin Endocrinol Metab, 17:377–385 (1957).PubMedCrossRefGoogle Scholar
  31. 31.
    H. Gershberg, Metabolic and renotropic effects of human growth hormone in disease, J Clin Endocrinol Metab, 20:1107–1119 (1960).PubMedCrossRefGoogle Scholar
  32. 32.
    R. Hirschberg, and J. Kopple, Increase in renal plasma flow and glomerular filtration rate during growth hormone treatment may be mediated by insulin-like growth factor I, Am J Nephrol, 8:249–253 (1988).PubMedCrossRefGoogle Scholar
  33. 33.
    R. Hirschberg, and J. Kopple, Role of growth hormone in the amino acid-induced acute rise in renal function in man, Kidney Int, 32:382–387 (1987).PubMedCrossRefGoogle Scholar
  34. 34.
    R. Hirschberg, and J. Kopple, Effects of growth hormone on GFR and renal plasma flow in man, Kidney Int 32 (Suppl 22):S21–S24 (1987).Google Scholar
  35. 35.
    K. Kleinman, and R. Glassock, Glomerular filtration rate fails to increase following protein ingestion in hypothalamo-hypophyseal-deficient adults, Am J Nephrol, 6:169–174 (1986).PubMedCrossRefGoogle Scholar
  36. 36.
    L. Ruilope, J. Rodico, B. Miranda, R. Robles, J. Sancho-Rof, and C. Romero, Renal effects of amino acid infusion in patients with panhypopituitarism, Hypertension, 11:557–559 (1988).PubMedCrossRefGoogle Scholar
  37. 37.
    R. Hirschberg, R. Zipser, L. Slomowitz, and J. Kopple, Glucagon and prostaglandins are mediators of amino acid-induced rise in renal hemodynamics, Kidney Int, 33:1147–1155 (1988).PubMedCrossRefGoogle Scholar
  38. 38.
    P. TerWee, J. Rosman, S. van der Geest, W. Sluiter, and A. Donker, Renal hemodynamics during separate and combined infusion of amino acids and dopamine, Kidney Int 29:870–874 (1986).CrossRefGoogle Scholar
  39. 39.
    P. Castellino, B. Coda, and R. DeFronzo, Effect of amino acid infusion on renal hemodynamics in humans, Am J Physiol, 251:F132–F140 (1986).PubMedGoogle Scholar
  40. 40.
    H. Parving, I. Noer, C. Mogensen, and P. Svendsen, Kidney function in normal man during shortterm growth hormone infusion, Acta Endocrinol (Copenhagen), 89:796–800 (1978).Google Scholar
  41. 41.
    J. Christiansen, J. Gammelgaard, H. Ørskov, A. Anderson, S. Temler, and H. Parving, Kidney function and size in normal subjects before and during growth hormone administration for one week, Eur J Clin Invest, 11:487–490 (1981).PubMedCrossRefGoogle Scholar
  42. 42.
    R. Hirschberg, H. Rabb, R. Bergamo, and J. Kopple, The delayed effect of growth hormone on renal function in humans, Kidney Int, 35:865–870 (1989).PubMedCrossRefGoogle Scholar
  43. 43.
    D. Haffner, E. Ritz, O. Mehls, J. Rosman, W. Blum, U. Heinrich, and A. Hübinger, Growth hormone induced rise in glomerular filtration rate is not obliterated by angiotensin-converting enzyme inhibitors, Nephron, 55:63–68 (1990).PubMedCrossRefGoogle Scholar
  44. 44.
    E. Ritz, B. Tönshoff, S. Worgall, G. Kovacs, and O. Mehls, Influence of growth hormone and insulin-like growth factor I on kidney function and kidney growth, Pediatr Nephrol 5:509–512 (1991).PubMedCrossRefGoogle Scholar
  45. 45.
    R. Hirschberg, and J. Kopple, Evidence that insulin-like growth factor I increases renal plasma flow and glomerular filtration rate in fasted rats, J Clin Invest, 83:326–330 (1989).PubMedCrossRefGoogle Scholar
  46. 46.
    R. Hirschberg, J. Kopple, R. Blantz, and B. Tucker, Effects of recombinant human insulin-like growth factor I on glomerular dynamics in the rat, J Clin Invest 87:1200–1206 (1991).PubMedCrossRefGoogle Scholar
  47. 47.
    R. Hirschberg, G. Brunori, J. Kopple, and H. Guler, Effects of insulin-like growth factor I on renal function in normal men, Kidney Int, 43:387–397 (1993).PubMedCrossRefGoogle Scholar
  48. 48.
    H. Guler, K. Eckardt, J. Zapf, C. Bauer, and E. Froesch, Insulin-like growth factor I increases glomerular filtration rate and renal plasma flow in man, Acta Endocrinol (Copenhagen), 121:101–106 (1989).Google Scholar
  49. 49.
    J. Hay lor, I. Singh, and A. El Nahas, Nitric oxide synthesis inhibitor prevents vasodilation by insulin-like growth factor I., Kidney Int 39:333–335 (1991).PubMedCrossRefGoogle Scholar
  50. 50.
    U. Baumann, T. Eisenhauer, and H. Hartmann, Increase of glomerular filtration rate and renal plasma flow by insulin-like growth factor I during euglycemic clamping in anaesthetized rats, Eur J Clin Invest, 22:204–209 (1992).PubMedCrossRefGoogle Scholar
  51. 51.
    B. Myers, W. Deen, and B. Brenner, Effects of norepinephrine and angiotensin II on the determinants of glomerular ultrafiltration and proximal tubule fluid reabsorption in the rat, Circ Res, 37:101–110(1975).PubMedCrossRefGoogle Scholar
  52. 52.
    C. Baylis, and B. Brenner, The physiologic determinants of glomerular ultrafiltration, Rev Physiol Biochem Pharmacol 80:1–45 (1978).PubMedGoogle Scholar
  53. 53.
    R. Palmer, A. Ferrige, and S. Moncada, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature, 327:524–525 (1989).CrossRefGoogle Scholar
  54. 54.
    R. Furchgott, P. Cherry, J. Zawadzki, and D. Jothianandan, Endothelial cells as mediators of vasodilation of arteries, J Cardiovasc Pharmacol 6:S336–S343 (1984).PubMedCrossRefGoogle Scholar
  55. 55.
    M. Young, and S. Vatner, Regulation of large coronary arteries, Circ Res, 59:579–596 (1986).PubMedCrossRefGoogle Scholar
  56. 56.
    P. Vanhoutte, and V. Miller, Heterogeneity of endothelium-dependent responses in mamallian blood vessels, J Cardiovasc Pharmacol 7:S12–S23 (1985).PubMedCrossRefGoogle Scholar
  57. 57.
    R. Furchgott, Role of endothelium in responses of vascular smooth muscle, Circ Res 53:557–573 (1983).PubMedCrossRefGoogle Scholar
  58. 58.
    R. Furchgott, and J. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature, 288:373–376 (1980).PubMedCrossRefGoogle Scholar
  59. 59.
    V. Kon, R. Harris, and I. Ichikawa, A regulatory role for large vessels in organ circulation, J Clin Invest, 85:1728–1733 (1990).PubMedCrossRefGoogle Scholar
  60. 60.
    P. Shultz, A. Shorer, and L. Raij, Effects of endothelium-derived relaxation factor and nitric oxide on rat mesangial cells, Am J Physiol, 258:F162–F168 (1990).PubMedGoogle Scholar
  61. 61.
    J. Tolins, R. Palmer, S. Moncada, and L. Raij, Role of endothelium-derived relaxing factor in regulation of renal hemodynamic responses, Am J Physiol, 258:H655–H662 (1990).PubMedGoogle Scholar
  62. 62.
    G. Burton, S. MacNeil, A. De Jonge, and J. Haylor, Cyclic GMP release and vasodilatation induced by EDRF and atrial natriuretic factor in the isolated perfused kidney of the rat, Br J Pharmacol, 99:364–368 (1990).PubMedCrossRefGoogle Scholar
  63. 63.
    R. Hirschberg, Die aminosäure und hormoninduzierte Modulation der Nierenfunktion und ihre mögliche Bedeutung für die Progression der chronischen Niereninsuffizienz, Habilitationsschrift, Free University of Berlin, School of Medicine, 1989.Google Scholar
  64. 64.
    R. Dullaart, S, Meijer, P. Marbach, and W. Sluiter, Effect of a somatostatin analogue, octreotide, on renal haemodynamics and albuminuria in acromegalic patients, Eur J Clin Invest 22:494–502 (1992).PubMedCrossRefGoogle Scholar
  65. 65.
    N. Hizuka, K. Takano, K. Asakawa, I. Sukegawa, I. Fukuda, H. Demura, M. Iwashita, T. Adachi, and K. Shizume, Measurement of free form of insulin-like growth factor I in human plasma, Growth Regul 1:51–55 (1991).PubMedGoogle Scholar
  66. 66.
    S. Gargosky, K. Moyse, P. Walton, J. Owens, J. Wallace, J. Robinson, and P. Owens, Circulating levels of insulin-like growth factors increase and molecular forms of their serum binding proteins change with human pregnancy, Biochem Biophys Res Comm 170:1157–1163 (1990).PubMedCrossRefGoogle Scholar
  67. 67.
    W. Isley, L. Underwood, and D. Clemmons, Dietary components that regulate serum somatomedin C concentrations in humans, J Clin Invest, 71:175–182 (1983).PubMedCrossRefGoogle Scholar
  68. 68.
    T. Prewitt, A. D’Ercole, B. Switzer, and J. Van Wyk, Relationship of serum immunoreactive somatomedin-C to dietary protein and energy in growing rats, J Nutr 112:144–150 (1982).PubMedGoogle Scholar
  69. 69.
    R. Hirschberg, and J. Kopple, Response of insulin-like growth factor I and renal hemodynamics to a high and low protein diet in the rat, J Am Soc Nephrol, 1:1034–1040 (1991).PubMedGoogle Scholar
  70. 70.
    A. Flyvbjerg, O. Thorlacius-Ussing, R. Næraa, J. Ingerslev, and H. Ørskov, Kidney tissue somatomedin C and initial renal growth in diabetic and uninephrectomized rats, Diabetologia, 31:310–314 (1988).PubMedGoogle Scholar
  71. 71.
    M. Bolze, R. Reeves, F. Lindbeck, and M. Elders, Influence of selected amino acid deficiencies on somatomedin, growth and glycoaminoglycan metabolism in weanling rats, J Nutr 115:782–787 (1985).PubMedGoogle Scholar
  72. 72.
    M. Maes, Y. Amand, L. Underwood, D. Maiter, and J. Ketelslegers, Decreased serum insulin-like growth factor I response to growth hormone in hypophysectomized rats fed a low protein diet: Evidence for a postreceptor defect, Acta Endocrinol (Copenhagen), 117:320–326 (1988).Google Scholar
  73. 73.
    D. Maiter, M. Maes, L. Underwood, T. Fliesen, G. Gerard, and J. Ketelslegers, Early changes in serum concentrations of somatomedin-C induced by dietary protein deprivation in rats: Contributions of growth hormone receptor and post-receptor defects, J Endocrinol 118:113–120 (1988).PubMedCrossRefGoogle Scholar
  74. 74.
    H. Payne-Robinson, I. Smith, and M. Golden, Plasma somatomedin-C in jamaican children recovering from severe malnutrition, Clin Res 34:866A (1986).Google Scholar
  75. 75.
    D. Clemmons, L. Underwood, R. Dickerson, R. Brown, L. Hak, R. MacPhee, M. Heizer, and W. Heizer, Use of plasma somatomedin-C/insulin-like growth factor I measurements to monitor the response to nutritional repletion in malnourished patients, Am J Clin Nutr, 41:191–198 (1985).PubMedGoogle Scholar
  76. 76.
    C. Maase, and H. Zondek, Über eigenartige Ödeme, Dtsch Med Wochenschr 43:484–485 (1917).CrossRefGoogle Scholar
  77. 77.
    G. Alleyne, The effect of severe protein calorie malnutrition on the renal function of jamaican children, Pediatr 39:400–411 (1967).Google Scholar
  78. 78.
    S. Klahr, and G. Alleyne, Effects of chronic protein-calorie malnutrition on the kidney, Kidney Int, 3:129–141 (1973).PubMedCrossRefGoogle Scholar
  79. 79.
    I. Ichikawa, M. Purkerson, S. Klahr, J. Troy, M. Martinez-Maldonado, and B. Brenner, Mechanism of reduced glomerular filtration rate in chronic malnutrition, J Clin Invest 65:982–988 (1980).PubMedCrossRefGoogle Scholar
  80. 80.
    D. Dardevet, M. Manin, M. Balage, C. Sornet, and J. Grizard, Influence of low-and high-protein diets on insulin and insulin-like growth factor-I binding to skeletal muscle and liver in the growing rat, Br J Nutr 65:47–60 (1991).PubMedCrossRefGoogle Scholar
  81. 81.
    R. Hirschberg, and J. Kopple, The growth hormone-insulin-like growth factor I axis and renal glomerular function, J Am Soc Nephrol 2:1417–1422 (1992).PubMedGoogle Scholar
  82. 82.
    M. Lumpkin, S. Mulroney, and A. Haramati, Inhibition of pulsatile growth hormone secretion and somatic growth in immature rats with a synthetic growth hormone releasing factor antagonist, Endocrinology 124:1154–1159 (1989).PubMedCrossRefGoogle Scholar
  83. 83.
    M. Lumpkin, and J. McDonald, Blockade of growth hormone-releasing factor (GRF) activity in the pituitary and hypothalamus of conscious rats with a peptidic GRF antagonist, Endocrinology 124:1522–1531 (1989).PubMedCrossRefGoogle Scholar
  84. 84.
    S. Mulroney, M. Lumpkin, and A. Haramati, Antagonist to GH-releasing factor inhibits growth and renal Pi absorption in immature rats, Am J Physiol 257:F29–F34 (1989).PubMedGoogle Scholar
  85. 85.
    R. Hirschberg, Effects of growth hormone and IGF-I on glomerular ultrafiltration in growth hormone-deficient rats, Regul Peptides, in press (1993).Google Scholar
  86. 86.
    S. Miller, V. Hansen, and M. Hammerman, Effects of growth hormone and IGF-I on renal function in rats with normal and reduced renal mass, Am J Physiol, 259:F747–F751 (1990).PubMedGoogle Scholar
  87. 87.
    D. Haffner, S. Zacharewics, O. Mehls, U. Heinrich, and E. Ritz, The acute effect of growth hormone on GFR is obliterated in chronic renal failure, Clin Nephrol 32:266–269 (1989).PubMedGoogle Scholar
  88. 88.
    B. Tönshoff, C. Tönshoff, J. Pinkowski, W. Blum, U. Heinrich, and O. Mehls, Effects of recombinant human growth hormone on growth and renal function in children with chronic renal failure, Acta Paediatr Scand 370 (Suppl E):193 (1990).Google Scholar
  89. 89.
    O. Mehls, E. Ritz, G. Kovacs, R. Fine, S. Worgal, and R. Mak, Effects of human recombinant growth hormone and IGF-I on growth and GFR in uremic rats, Kidney Int 37:513Abstr (1990).Google Scholar
  90. 90.
    M. O’Shea, S. Miller, and M. Hammerman, Effects of IGF-I on renal function in patients with chronic renal failure, Am J Physiol 264:F917–F922 (1993).PubMedGoogle Scholar
  91. 91.
    D. Bergenstal, and M. Lipsett, Metabolic effects of human growth hormone and growth hormone of other species in man, J Endocrinol Metab 20:1424–1436 (1960).CrossRefGoogle Scholar
  92. 92.
    J. Beck, E. McGarry, I. Dyrenfurth, and E. Venning, The metabolic effects of human and monkey growth hormone in man, Ann Intern Med 49:1090–1094 (1958).PubMedCrossRefGoogle Scholar
  93. 93.
    R. Quigley, and M. Baum, Effects of growth hormone and insulin-like growth factor I on rabbit proximal convoluted tubule transport, J Clin Invest 88:368–374 (1991).PubMedCrossRefGoogle Scholar
  94. 94.
    N. Yanagawa, D. Sheikh-Hamad, and O. Jo, Insulin-like growth factor II directly increases renal brush border membrane sodium transport, J Am Soc Nephrol 2:447 (Abstr) (1991).Google Scholar
  95. 95.
    J. Caverzasio, R. Faundez, H. Fleisch, and J. Bonjour, Tubular adaptation to Pi restriction in hypophysectomized rats, Pflüger’s Arch 392:17–21 (1981).CrossRefGoogle Scholar
  96. 96.
    J. Bonjour, and J. Caverzasio, IGF-I a key controlling element in phosphate homeostasis during growth, in: “Modern concepts of insulin-like growth factors,”E. Spencer, ed., Elsevier, New York (1991).Google Scholar
  97. 97.
    R. Hirschberg, and C. Nast, Glomerular hypertrophy and segmental glomerular sclerosis are not linked in subtotally nephrectomized rats, J Am Soc Nephrol 3:739 (Abstr) (1992).Google Scholar
  98. 98.
    H. Guler, J. Zapf, E. Scheiwiller, and E. Froesch, Recombinant human insulin-like growth factor I stimulates growth and has distinct effects on organ size in hypophysectomized rats, Proc Natl Acad Sei USA 85:4889–4893 (1988).CrossRefGoogle Scholar
  99. 99.
    A. El Nahas, J. Le Carpentier, A. Bassett, and D. Hill, Dietary protein and insulin-like growth factor I content following unilateral nephrectomy, Kidney Int 36 (Suppl 27):S15–S19 (1989).Google Scholar
  100. 100.
    S. Mulroney, A. Haramati, H. Werner, C. Bondy, C. Roberts, and D. LeRoith, Altered expression of insulin-like growth factor I (IGF-I) and IGF receptor genes after unilateral nephrectomy in immature rats, Endocrinology 130:249–256 (1992).PubMedCrossRefGoogle Scholar
  101. 101.
    S. Mulroney, A. Haramati, C. Roberts, and D. LeRoith, Renal IGF-I mRNA levels are enhanced following unilateral nephrectomy in immature but not adult rats, Endocrinology, 128:2660–2662 (1991).PubMedCrossRefGoogle Scholar
  102. 102.
    A. Flyvbjerg, H. Ørskov, K. Nyborg, J. Frystyk, S. Marshall, K. Bornfeldt, H. Arnqvist, and K. Jorgensen, Kidney IGF-I accumulation occurs in four different conditions with rapid initial kidney growth in rats, in: “Modern concepts of insulin-like growth factors,”E. Spencer, ed., Elsevier, New York (1991).Google Scholar
  103. 103.
    A. Fogo, and I. Ichikawa, Evidence for a pathogenic linkage between glomerular hypertrophy and sclerosis, Am J Kidney Dis, 17:666–669 (1991).PubMedGoogle Scholar
  104. 104.
    A. Fogo, B. Hawkins, P. Berry, A. GHck, M. Chiang, R. MacDonell, and I. Ichikawa, Glomerular hypertrophy in minimal change disease predicts subsequent progression to focal glomerular sclerosis, Kidney int, 38:115–123 (1990).PubMedCrossRefGoogle Scholar
  105. 105.
    A. Fogo, and I. Ichikawa, Evidence for a central role of glomerular growth promoters in the development of sclerosis, Sem Nephrol, 9:329–342 (1989).Google Scholar
  106. 106.
    Y. Yoshida, A. Fogo, and I. Ichikawa, Glomerular hemodynamics vs. hypertrophy in experimental glomerular sclerosis, Kidney Int, 35:6540660 (1989).CrossRefGoogle Scholar
  107. 107.
    H. Lafferty, and B. Brenner, Are glomerular hypertension and hypertrophy independent risk factors for progression of renal disease? Sem Nephrol, 10:294–304 (1990).Google Scholar
  108. 108.
    S. Peng, G. Lee, C. Nast, R. Guillermo, P. Levin, C. Ihm, R. Glassock, and S. Adler, Increments in procollagen α1(IV) mRNA levels are not required for glomerular hypertrophy, J Am Soc Nephrol 2:687 (Abstr) (1991).Google Scholar
  109. 109.
    S. Feld, R. Hirschberg, A. Artishevsky, R. Glassock, and S. Adler, IGF-I increases procollagen α1(IV) mRNA levels in cultured mesangial cells, J Am Soc Nephrol 2:573 (Abstr) (1991).Google Scholar
  110. 110.
    L. Mathews, R. Hammer, R. Brinster, and R. Palmiter, Expression of insulin-like gowth factor I intransgenic mice with elevated levels of growth hormone is correlated with growth, Endocrinology, 123:433–437 (1988).PubMedCrossRefGoogle Scholar
  111. 111.
    L. Mathews, R. Hammer, R. Behringer, A. D’Ercole, G. Bell, R. Brinster, and R. Palmiter, Growth enhancement of transgenic mice expressing human insulin-like growth factor I, Endocrinology, 123:2827–2833 (1988).PubMedCrossRefGoogle Scholar
  112. 112.
    C. Quaife, L. Mathews, C. Pinkert, R. Hammer, R. Brinster, and R. Palmiter, Histopathology associated with elevated levels of growth hormone and insulin-like growth factor I in transgenic mice, Endocrinology, 124:40–48 (1989).PubMedCrossRefGoogle Scholar
  113. 113.
    T. Doi, L. Striker, C. Quaife, F. Conti, R. Palmiter, R. Behringer, R. Brinster, and G. Striker, Progressive glomerulosclerosis develops in transgenic mice chronically expressing growth hormone and growth hormone releasing factor but not in those expressing insulinlike growth factor-I, Am J Pathol, 131:398–403 (1988).PubMedGoogle Scholar
  114. 114.
    T. Doi, L. Striker, C. Gibson, L. Agodoa, R. Brinster, and G. Striker, Glomerular lesions in mice transgenic for growth hormone and insulinlike growth factor I, Am J Pathol, 137:541–552 (1990).PubMedGoogle Scholar
  115. 115.
    T. Doi, L. Striker, K. Kimata, E. Peten, Y. Yamada, and G. Striker, Glomerulosclerosis in mice transgenic for growth hormone: increased mesangial extracellular matrix is correlated with kidney mRNA levels, J Exp Med 173:1287–1290 (1991).PubMedCrossRefGoogle Scholar
  116. 116.
    C. Pesce, L. Striker, E. Peten, S. Elliot, and G. Striker, Glomerulosclerosis at both early and late stages is associated with increased cell turnover in mice transgenic íòr growth hormone, Lab Invest, 65:601–605 (1991).PubMedGoogle Scholar
  117. 117.
    H. Humes, D. Cieslinski, T. Coimbra, J. Messana, and C. Galvao, Epidermal growth factor enhances renal tubule cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure, J Clin Invest, 84:1757–1761 (1989).PubMedCrossRefGoogle Scholar
  118. 118.
    J. Norman, Y. Tsau, A. Bacay, and L. Fine, Epidermal growth factor accelerates functional recovery from ischaemic acute tubular necrosis in the rat: Role of the epidermal growth factor receptor, Clin Sci 78:445–450 (1990).PubMedGoogle Scholar
  119. 119.
    R. Harris, R. Hoover, H. Jacobson, and K. Badr, Evidence for glomerular actions of epidermal growth factor in the rat, J Clin Invest, 82:1028–1039 (1988).PubMedCrossRefGoogle Scholar
  120. 120.
    S. Kanda, K. Nomata, P. Sana, N. Nishimura, J. Yamada, H. Kanatake, and Y. Saito, Growth factor regulation of the renal cortical tubular cell by epidermal growth factor, IGF-I, acidic and basic fibroblast growth factor, and transforming growth factor-ß in serum free culture, Cell Biol Int Rep 13:687–699 (1989).PubMedCrossRefGoogle Scholar
  121. 121.
    S. Kupfer, L. Underwood, R. Baxter, and D. Clemmons, Enhancement of the anabolic effects of growth hormone and IGF-I by use of both agents simultaneously, J Clin Invest 91:391–396 (1993).PubMedCrossRefGoogle Scholar
  122. 122.
    H. Ding, J. Kopple, A. Cohen, and R. Hirschberg, Recombinant human insulin-like growth factor-I accelerates recovery and reduces catabolism in rats with ischemic acute renal failure, J Clin Invest, 91:2281–2287(1993).PubMedCrossRefGoogle Scholar
  123. 123.
    S. Miller, D. Martin, J. Kissane, and M. Hammerman, IGF-I accelerates recovery from ischemic acute tubular necrosis in the rat, Proc Natl Acad Sci USA 89:11876–11880 (1992).PubMedCrossRefGoogle Scholar
  124. 124.
    R. Rabkin, A. Sorensen, D. Mortensen, and R. Clark, Insulin-like growth factor I enhances recovery from acute renal failure induced by ischemia, J Am Soc Nephrol 3:713 (Abstr) (1992).Google Scholar
  125. 125.
    Y. Yagil, B. Myers, and R. Jamison, Course and pathogenesis of postischemic acute renal failure in the rat, Am J Physiol, 255:F257–F264 (1988).PubMedGoogle Scholar
  126. 126.
    R. Williams, C. Thomas, L. Navar, and A. Evan, Hemodynamic and single nephron function during maintenance phase of ischemic acute renal failure in the dog, Kidney Int 19:503–515 (1981).PubMedCrossRefGoogle Scholar
  127. 127.
    J. Barnes, R. Osgood, H. Reineck, and J. Stein, Glomerular alterations in an ischemic model of acute renal failure, Lab Invest, 45:378–386 (1981).PubMedGoogle Scholar
  128. 128.
    F. Toback, Regeneration after acute tubular necrosis, Kidney Int 41:226–246 (1992).PubMedCrossRefGoogle Scholar
  129. 129.
    B. Myers, and S. Moran, Hemodynamically mediated acute renal failure, N Engl J Med 314:97–105 (1986).PubMedCrossRefGoogle Scholar
  130. 130.
    G. Andersson, and E. Jennische, IGF-I immunoreactivity is expressed by regenerating renal tubular cells after ischaemic injury in the rat, Acta Physiol Scand, 132:13–23 (1991).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Raimund Hirschberg
    • 1
  1. 1.Division of Nephrology and HypertensionHarbor-UCLA Medical Center and UCLA School of MedicineTorranceUSA

Personalised recommendations