Skip to main content

Insulin Like Growth Factor 1 Receptor Signal Transduction to the Nucleus

  • Chapter
Current Directions in Insulin-Like Growth Factor Research

Abstract

The IGF-1 receptor (IGF-1R) is a member of the tyrosine kinase class of cell surface receptors which become autophosphorylated on tyrosyl residues upon ligand binding (Czech, 1989). It has striking homology to the insulin receptor; however, each receptor maintains a unique specificity for its own ligand (Schumacher et al., 1991). The mechanism by which the binding of IGF-1 to its receptor elicits a cellular effect has been the subject of considerable research with a singular cohesive model having yet to be defined. The autophosphorylation of the IGF-1R via subunit transphosphorylation is clearly a necessary requisite for transmission of an intracellular signal, as found for the insulin receptor (Sweet et al., 1987; Ullrich and Schlessinger, 1990). In the case of other growth factor receptors with tyrosine kinase domains such as the EGF and PDGF receptors, receptor activation results in phospholipase C activation leading to 1,2-diacylglycerol and inositol 1,4,5-trisphosphate production and a corresponding increase in protein kinase C (pkC) and calcium mobilization, respectively (Berridge, 1993). Recently, evidence for a direct association between the EGF and PDGF receptors and a number of key substrates such as phospholipase C-γ, PI-3 kinase and GAP (p21ras GTPase activating protein, Cantley et al., 1991) has been demonstrated. This direct link has also been established for the IGF-1R and PI-3 kinase interactions (Cantley et al., 1991; Yamamoto et al., 1992; Lavan et al., 1992). It was recently reported that in cells stimulated with insulin in the presence of the protein tyrosine phosphatase inhibitor, phenylarsine oxide, 5–10% of the cellular GAP associates with the insulin receptor (Pronk et al., 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, V., Polotskaya, A., Wagner, F. and Kraft, A.S. (1992). Affinity-purified c-Jun amino-terminal protein kinase requires serine/threonine phosphorylation for activity. J. Biol. Chem. 267,17001–17005.

    PubMed  CAS  Google Scholar 

  • Andrews, N.C. and Faller, D.V. (1991). A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nuc. Acids Res. 19, 2499.

    Article  CAS  Google Scholar 

  • Angel, P., Imagawa, M., Chiu, R., Stein, B., Imbra, R.J., Rahmsdorf, H.J., Jonat, C., Herrlich, P. and Karin, M. (1987). Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-activating factor. Cell 49, 729–739.

    Article  PubMed  CAS  Google Scholar 

  • Bell, J.C., Mahadevan, L.C., Colledge, W.H., Frackleton Jr., A.R., Sargent, M.G. and Foulkes, J.G. (1987). Abelson-transformed fibroblasts contain nuclear phosphotyrosyl proteins which preferentially bind to murine DNA. Nature 325, 552–554.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M.J. (1993). Inositol trisphosphate and calcium signalling. Nature 361, 315–325.

    Article  PubMed  CAS  Google Scholar 

  • Bos, T.J., Bohmann, D., Tsuchle, H., Tjian, R. and Vogt, P.K. (1988). v-jun encodes a nuclear protein with enhancer binding properties of AP-1. Cell 52, 705–712.

    Article  PubMed  CAS  Google Scholar 

  • Cantley, L.C., Auger, K.R., Carpenter, C., Duckworth, B., Graziani, A., Kapeller, R. and Soltoff, S. (1991). Oncogenes and signal transduction. Cell 64, 281–302.

    Article  PubMed  CAS  Google Scholar 

  • Chen, R.H., Sarnecki, C. and Blenis, J. (1992). Nuclear localization and regulation of erk-encoded and rskencoded protein kinases. Mol. Cell. Biol. 12, 915–927.

    PubMed  CAS  Google Scholar 

  • Czech, M.P. (1989). Signal transmission by the insulin-like growth factors. Cell 59, 235–238.

    Article  PubMed  CAS  Google Scholar 

  • Kaleko, M., Rutter, W.J. and Miller, A.D. (1990). Overexpression of the human insulinlike growth factor I receptor promotes ligand-dependent neoplastic transformation. Mol. Cell. Biol. 10, 464–73.

    PubMed  CAS  Google Scholar 

  • Koch, C.A., Anderson, D., Moran, M.F., Ellis, C. and Pawson, T. (1991). SH2 and SH3 domains -Elements that control interactions of cytoplasmic signaling proteins. Science 252, 668–674.

    Article  PubMed  CAS  Google Scholar 

  • Lavan, B.E., Kuhne, M.R., Garner, C.W., Anderson, D., Reedijk, M., Pawson, T. and Lienhard, G.E. (1992). The association of insulin-elicited phosphotyrosine proteins with sre homology 2 domains. J. Biol Chem. 267, 11631–6.

    PubMed  CAS  Google Scholar 

  • Nakabeppu, Y., Ryder, K. and Nathans, D. (1988). DNA binding activities of three murine jun proteins: Stimulation by fos. Cell 55, 907–915.

    Article  PubMed  CAS  Google Scholar 

  • Oemar, B.S., Foellmer, H.G., Hodgdon-Anandan, L. and Rosenzweig, S.A. (1991a). Regulation of Insulin-Like Growth Factor-I Receptors in diabetic mesangial cells. J. Biol. Chem. 266, 2369–2373.

    PubMed  CAS  Google Scholar 

  • Oemar, B.S., Law, N.M. and Rosenzweig, S.A. (1991b). Insulin-Like Growth Factor-I induces tyrosyl phosphorylation of nuclear proteins. J. Biol. Chem. 266, 24241–24244.

    PubMed  CAS  Google Scholar 

  • Pronk, G.J., Polakis, P., Wong, G., Devriessmits, A.M.M., Bos, J.L. and Mccormick, F. (1992). Association of a tyrosine kinase activity with gap complexes in v-src transformed fibroblasts. Oncogene 7, 389– 394.

    PubMed  CAS  Google Scholar 

  • Ray, L.B. and Sturgill, T.W. (1988). Insulin-stimulated microtubule-associated protein kinase is phosphorylated on tyrosine and threonine in vivo. Proc. Natl. Acad. Sci. USA 85, 3753–3757.

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig, S.A., Zetterstròm, C. and Benjamin, A. Identification of retinal insulin receptors using sitespecific antibodies to a carboxyl-terminal peptide of the human insulin receptor α-subunit: Up-regulation of neuronal insulin receptors in diabetes. J. Biol. Chem. 265:18030–18034, 1990.

    PubMed  CAS  Google Scholar 

  • Rothenberg, P.L., Lane, W.S., Karasik, A., Backer, J., White, M. and Kahn, C.R. (1991). Purification and partial sequence analysis of pp185, the major cellular substrate of the insulin receptor tyrosine kinase. J. Biol. Chem. 266, 8302–8311.

    PubMed  CAS  Google Scholar 

  • Schumacher, R., Mosthaf, L., Schlessinger, J., Brandenburg, D. and Ullrich, A. (1991). Insulin and Insulin-Like Growth Factor-1 binding specificity is determined by distinct regions of their cognate receptors. J. Biol. Chem. 266, 19288–19295.

    PubMed  CAS  Google Scholar 

  • Sheng, M. and Greenberg, M.E. (1990). The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4, 477–485.

    Article  PubMed  CAS  Google Scholar 

  • Singh, H., Sen, R., Baltimore, D. and Sharp, P.A. (1986). A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature 319, 154–158.

    Article  PubMed  CAS  Google Scholar 

  • Smeal, T., Binetruy, B., Mercola, D., Groverbardwick, A., Heidecker, G., Rapp, U.R. and Karin, M. (1992). Oncoprotein-mediated signalling cascade stimulates c-Jun activity by phosphorylation of serine-63 and serine-73. Mol. Cell. Biol. 12, 3507–3513.

    PubMed  CAS  Google Scholar 

  • Sun, X.J., Rothenberg, P., Kahn, C.R., Backer, J.M., Araki, E., Wilden, P.A., Cahill, D.A., Goldstein, B.J. and White, M.F. (1991). Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352, 73–77.

    Article  PubMed  CAS  Google Scholar 

  • Sweet, L.J., Morrison, B.D., Wilden, P.A. and Pessin, J.E. (1987). Insulin-dependent intermolecular subunit communication between isolated αß heterodimeric insulin receptor complexes. J. Biol. Chem. 262, 16730–16738.

    PubMed  CAS  Google Scholar 

  • Trejo, J., Chambard, J-C., Karin, M. and Brown, J.H. (1992). Biphasic increase in c-jun mRNA is required for induction of AP-1-mediated gene transcription: Differential effects of muscarinic and thrombin receptor activation. Mol. Cell Biol. 12, 4742–4750.

    PubMed  CAS  Google Scholar 

  • Ullrich, A. and Schlessinger, J. (1990). Signal transduction by receptors with tyrosine kinase activity. Cell 61,203–212.

    Article  PubMed  CAS  Google Scholar 

  • Werner, H., Shenorr, Z., Stannard, B., Burguera, B., Roberts, C.T. and Leroith, D. (1990). Experimental diabetes increases Insulinlike Growth Factor-I and Factor-II receptor concentration and gene expression in kidney. Diabetes 39, 1490–1497.

    Article  PubMed  CAS  Google Scholar 

  • White, M.F., Maron, R. and Kahn, C.R. (1985). Insulin rapidly stimulates tyrosine phosphorylation of a Mr 185,000 protein in intact cells. Nature 318, 183–186.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, K., Altschuler, D., Wood, E., Horlick, K., Jacobs, S. and Lapetina, E.G. (1992). Association of phosphorylated Insulin-like Growth Factor-I receptor with the SH2 domains of phosphatidylinositol 3-kinase p85. J. Biol. Chem. 267 ,11337–43.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rosenzweig, S.A., Oemar, B.S., Law, N.M., Shankavaram, U.T., Miller, B.S. (1994). Insulin Like Growth Factor 1 Receptor Signal Transduction to the Nucleus. In: Le Roith, D., Raizada, M.K. (eds) Current Directions in Insulin-Like Growth Factor Research. Advances in Experimental Medicine and Biology, vol 343. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2988-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2988-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6301-9

  • Online ISBN: 978-1-4615-2988-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics