Spontaneous Mutations and Fidelogens

  • R. C. von Borstel
  • Ursula G. G. Hennig
Part of the Basic Life Sciences book series (BLSC, volume 61)

Abstract

The word “antimutagenesis” was first used by Novick and Szilard (51) to describe the lowering of the spontaneous mutation rate. Since then, Kada (26) has made antimutagenesis into a generic word to describe two types of events: the inactivation of mutagens or carcinogens before they can reach the DNA, and the events which can restore the DNA after lesions have occurred. J.W. Drake suggested the word “desmutagens” to Kada for mutagen inactivators, and P.J. Hastings since has suggested “countermutagens” as a synonym, and perhaps a more appropriate term. “Inhibition” of the spontaneous mutation rate, which Novick and Szilard were talking about, has plodded along without a species name, although Kada et al. (27) used the term “bioantimutagenesis” for the types of reactions which act at the level of the DNA, including both inhibition of inducibility of mutagenic repair processes and the lowering of the spontaneous mutation rate. The lowering of the spontaneous mutation rate deserves a name of its own, perhaps reflecting the essential quality of improving the fidelity with which DNA normally is replicated and repaired. Steinberg has recommended the term “fidelogen” as an alternative word for “bioantimutagen.” Fidelogens cover three classes, the “rate droppers,” which lower the spontaneous mutation rate, the “gash healers,” which reverse the lesions inducted by mutagens and carcinogens, and the “SOS stoppers,” which eliminate inducibility of mutagenic DNA repair. The perfect fidelogen is one that will carry out at least the first two of these three functions.

Keywords

Estrogen Recombination Aldehyde Quinone Cytosine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ames, B.N. (1983) Dietary carcinogens and anticarcinogens. Science 221:1256–1264.PubMedCrossRefGoogle Scholar
  2. 2.
    Ames, B.N., and L.S. Gold (1991) Endogenous mutagens and the causes of aging and cancer. Mutat. Res. 250:3–16.PubMedCrossRefGoogle Scholar
  3. 3.
    Baltz, R.H., P.M. Bingham, and J.W. Drake (1976) Heat mutagenesis in bacteriophage T4: The transition pathway. Proc. Natl. Acad. Sci. ,USA 73:1269–1273.PubMedCrossRefGoogle Scholar
  4. 4.
    Böhme, H. (1967) Genetic instability of an ultraviolet-sensitive mutant of Proteus mirabilis. Biochem. Biophys. Res. Comm. 28:191–196.PubMedCrossRefGoogle Scholar
  5. 5.
    Brendel, M., and R.H. Haynes (1973) Interactions among genes controlling sensitivity to radiation and alkylation in yeast. Molec. Gen. Genet. 125:197–216.PubMedCrossRefGoogle Scholar
  6. 6.
    Cairns, J. (1986) A summary: And a look ahead. In Antimutagenesis and Anticarcinogenesis Mechanisms ,D.M. Shankel, P.E. Hartman, T. Kada, and A. Hollaender, eds. Plenum Press, New York, pp. 531–535.CrossRefGoogle Scholar
  7. 7.
    Chen, J., B. Derfler, A. Maskati, and L. Samson (1989) Cloning of eukaryotic DNA glycosylase repair gene by the suppression of a DNA repair defect in Escherìchia coll Proc. Natl. Acad. Sci., USA 86:7961–7965.CrossRefGoogle Scholar
  8. 8.
    Clarke, C.H., and D.M. Shankel (1975) Antimutagenesis in microbial systems. BacterioL Rev. 39:33–53.PubMedGoogle Scholar
  9. 9.
    Clarke, C.H., and D.M. Shankel (1988) Antimutagens against spontaneous and induced reversion of a lacZ frameshift mutation in E. coli K-12 strain ND-160. Mutat. Res. 202:19–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Conger, A.D., and L.M. Fairchild (1952) Breakage of chromosomes by oxygen. Proc. Natl. Acad. Sci. ,USA 38:289–299.PubMedCrossRefGoogle Scholar
  11. 11.
    Coulondre, C., J.H. Miller, P.J. Farabaugh, and W. Gilbert (1978) Molecular basis of base substitution hotspots in E. coli. Nature 274:775–780.PubMedCrossRefGoogle Scholar
  12. 12.
    Cunningham, R.P., and B. Weiss (1985) Endonuclease III (nth) mutants of Escherichia coli. Proc. Natl. Acad. Sci., USA 82:4740478.CrossRefGoogle Scholar
  13. 13.
    Drake, J.W., and E.F. Allen (1968) Antimutagenic DNA polymerases of bacteriophage T4. Cold Spring Harbor Symp. Quant. Biol. 33:339–344.PubMedCrossRefGoogle Scholar
  14. 14.
    Ehrlich, M., X.-Y. Zhang, and M.N. Inamdar (1990) Spontaneous deamination of cytosine and 5-methylcytosine residues in DNA and replacement of 5 methylcytosine residues with cytosine residues. Mutat. Res. 238:277–286.PubMedCrossRefGoogle Scholar
  15. 15.
    Esterbauer, H., P. Eckl, and A. Ortner (1990) Possible mutagens derived from lipids and lip precursors. Mutat. Res. 238:223–233.PubMedCrossRefGoogle Scholar
  16. 16.
    Fabre, F., and H. Roman (1977) Genetic evidence for inducibility of recombination competence in yeast. Proc. Natl. Acad. Sci. ,USA 74:1667–1671.PubMedCrossRefGoogle Scholar
  17. 17.
    Fridovich, I. (1978) The biology of oxygen radicals. Science 201:875–880.PubMedCrossRefGoogle Scholar
  18. 18.
    Friedberg, E.C. (1984) DNA Repair. W.H. Freeman and Company, New York.Google Scholar
  19. 19.
    Game, J.C., and B.S. Cox (1972) Epistatic interactions between four rad loci in yeast. Mutat. Res. 16:353–362.PubMedCrossRefGoogle Scholar
  20. 20.
    Grafström, R.C. (1990) In vitro studies of aldehyde effects related to human respiratory carcinogenesis. Mutat. Res. 238:175–184.PubMedCrossRefGoogle Scholar
  21. 21.
    Hanawalt, P.C., and R.H. Haynes (1965) Repair replication of DNA in bacteria: Irrelevance of chemical nature of base defect. Biochem. Biophys. Res. Comm. 19:462–467.PubMedCrossRefGoogle Scholar
  22. 22.
    Hastings, P.J., S.-K. Quah, and R.C. von Borstel (1976) Spontaneous mutation by mutagenic repair of spontaneous lesions in DNA. Nature 264:719–722.PubMedCrossRefGoogle Scholar
  23. 23.
    Haynes, R.H., and B.A. Kunz (1985) A possible role for deoxyribonucleotide pools in carcinogenesis. InBasic and Applied Mutagenesis ,A. Muhammed and R.C. von Borstel, eds. Plenum Press, New York, pp. 147–156.CrossRefGoogle Scholar
  24. 24.
    Inoue, T., T. Ohta, Y. Sadaie, and T. Kada (1981) Effect of cobaltous chloride on spontaneous mutation induction in a Bacillus subtilis mutator strain. Mutat. Res. 91:41–45.PubMedCrossRefGoogle Scholar
  25. 25.
    Jyssum, K. (1968) Mutator factor in Neisserìa meningitides associated with increased sensitivity to ultraviolet light and defective transformation. J. Bad. 96:41–45.Google Scholar
  26. 26.
    Kada, T. (1982) Mechanisms and genetic implications of environmental antimutagens. In Environmental Mutagens and Carcinogens ,T. Sugimura, S. Kondo, and H. Takebe, eds. University of Tokyo Press, Tokyo, pp. 355–359.Google Scholar
  27. 27.
    Kada, T., T. Inoue, T. Ohta, and Y. Shirasu (1986) Antimutagens and their mode of action. In Antimutagenesis and Anticarcinogenesis Mechanisms ,D.M. Shankel, P.E. Hartman, T. Kada, and A. Hollaender, eds. Plenum Press, New York, pp. 181–196.CrossRefGoogle Scholar
  28. 28.
    Kasai, H., and S. Nishimura (1984) Hydroxylation of deoxyguanosine at the C 8 position by ascorbic acid and other reducing agents. Nucleic Acids Res. 12:2137–2145.PubMedCrossRefGoogle Scholar
  29. 29.
    Kramer, W., B. Kramer, M.S. Williamson, and S. Fogel (1989) Cloning and nucleotide sequence of DNA mismatch repair gene PMS1 from Saccharomyces cerevisiae Homology of PMS1 to procaryotic MutL and HexBJ. Bact. 171:5339–5346.PubMedGoogle Scholar
  30. 30.
    Kunkel, T.A., and L.A. Loeb (1981) Fidelity of mammalian DNA polymerases. Science 213:765–767.PubMedCrossRefGoogle Scholar
  31. 31.
    Lee, A.T., and A. Cerami (1990) In vitro and in vivo reactions of nucleic acids with reducing sugars. Mutat. Res. 238:185–191.PubMedCrossRefGoogle Scholar
  32. 32.
    Liehr, J.G. (1990) Genotoxic effects of estrogens. Mutat. Res. 238:269–276.PubMedCrossRefGoogle Scholar
  33. 33.
    Lindahl, T. (1990) Repair of intrinsic DNA lesions. Mutat. Res. 238:305–311.PubMedCrossRefGoogle Scholar
  34. 34.
    Loeb, L.A. (1989) Endogenous carcinogenesis: Molecular oncology into the twenty-first century. Cancer Res. 49:5489–5496.PubMedGoogle Scholar
  35. 35.
    Loeb, L.A., and K.C. Cheng (1990) Errors in DNA synthesis: A source of spontaneous mutations. Mutat. Res. 238:297.304.PubMedCrossRefGoogle Scholar
  36. 36.
    Loeb, L.A., and B.D. Preston (1986) Mutagenesis by apurinic/apyrimidinic sites. Ann. Rev. Genet. 20:201–230.PubMedCrossRefGoogle Scholar
  37. 37.
    Lutz, W.K. (199) Endogenous genotoxic agents and processes as a basis of spontaneous carcinogenesis. Mutat. Res. 238:287–295.PubMedCrossRefGoogle Scholar
  38. 38.
    MacPhee, D.G., R.H. Haynes, B.A. Kunz, and D. Anderson, eds. (1988) Genetic aspects of deoxyribonucleotide metabolism.. Mutat. Res. 200 (special issue):1-256.Google Scholar
  39. 39.
    Magni, G.E. (1963) The origin of spontaneous mutations during meiosis. Proc. Natl. Acad. Sci., USA 50:975–980.PubMedCrossRefGoogle Scholar
  40. 40.
    Magni, G.E. (1964) Origin and nature of spontaneous mutations in meiotic organisms. J. Cell. Comp. Physiol. 64 (Suppl. 1): 165–172.CrossRefGoogle Scholar
  41. 41.
    Magni, G.E., and R.C. von Borstel (1962) Different rates of spontaneous mutations during mitosis and meiosis in yeast. Genetics 47:1097–1108.PubMedGoogle Scholar
  42. 42.
    McBride, T.J., B.D. Preston, and L.A. Loeb (1991) Mutagenic spectrum resulting from DNA damage by oxygen radicals. Biochemistry 30:207–213.PubMedCrossRefGoogle Scholar
  43. 43.
    Mehta, R.D., and R.C. von Borstel (1982) Genetic activity of diethylstilbestrol in Saccharomyces cerevisiae Enhancement of mutagenicity by oxidizing agents. Mutat. Res. 92:49–61.PubMedCrossRefGoogle Scholar
  44. 44.
    Meier, I., S.E. Shepard, and W.K. Lutz (1990) Nitrosation of aspartic acid, aspartame, and glycine ethylester. Alkylation of 4-(p-nitrobenzylpyridine) (NBP) in vitro and binding to DNA in the rat. Mutat. Res. 238:193–201.PubMedCrossRefGoogle Scholar
  45. 45.
    Michaels, M.L., L. Pham, Y. Nghiem, C. Cruz, and J.H. Miller (1990) MutY, an adenine glycosylase active on G-A mispairs, has homology to endonuclease III. Nucl. Acids Res. 18:3841–3845.PubMedCrossRefGoogle Scholar
  46. 46.
    Michael, M.L., L. Pham, C. Cruz, and J.H. Miller (1991) MutM, a protein that prevents G.C→T.A transversions, is a formamidopyrimidine-DNAglycosylase. Nucl. Acids Res. 19:3629–3632.CrossRefGoogle Scholar
  47. 47.
    Mohn, G (1968) Korrelation zwischen verminderter Reparatur-fähigkeit für UV-Läsionen und hoher Spontanmutabilität eines Mutatorstammes von E. coli K-12. Molec. Gen. Genet. 101:43–50.PubMedCrossRefGoogle Scholar
  48. 48.
    Morrison, A., R.B. Christensen, J. Alley, A.K. Beck, E.G. Bernstine, J.F. Lemontt, and C.W. Lawrence (1989) REV3 ,a Saccharomyces cerevisiae gene whose function is required for induced mutagenesis, is predicted to encode a nonessential DNA polymerase. J. Bacteriol. 171:5659–5667.PubMedGoogle Scholar
  49. 49.
    Muller, H.J. (1927) Artificial transmutation of the gene. Science 66:85–87.CrossRefGoogle Scholar
  50. 50.
    Muller, J.H., and L.M. Mott-Smith (1930) Evidence that natural radioactivity is inadequate to explain the frequency of “natural” mutations. Proc. Natl. Acad. Sci. ,USA 16:277–285.PubMedCrossRefGoogle Scholar
  51. 51.
    Novick, A., and L. Szilard (1952) Anti-mutagens. Nature 170:926–927.PubMedCrossRefGoogle Scholar
  52. 52.
    Parker, K.R., and R.C. von Borstel (1990) Antimutagenesis in yeast by sodium chloride, potassium chloride, and sodium saccharin. In Antimutagenesis and Anticarcinogenesis Mechanisms II ,Y. Kuroda, D.M. Shankel, and M.D. Waters, eds. Plenum Press, New York, pp. 367–371.CrossRefGoogle Scholar
  53. 53.
    Puglisi, P.O. (1966) Mutagenic and antimutagenic effects of acridine salts in yeast. Genetics 54:315–322.Google Scholar
  54. 54.
    Puglisi, P.P. (1967) Mutagenic and antimutagenic effects of acridine salts in yeast. Mutat. Res. 4:289–294.PubMedCrossRefGoogle Scholar
  55. 55.
    Quah, S.-K., R.C. von Borstel, and P.J. Hastings (1980) Spontaneous mutations in yeast. Genetics 96:819–839.PubMedGoogle Scholar
  56. 56.
    Quinones, A., and R. Piechocki (1985) Isolation and characterization of Escherichia coli antimutators. Molec. Gen. Genet. 201:315–322.PubMedCrossRefGoogle Scholar
  57. 57.
    Ramatar, D., and B. Demple (1991) Biological role of yeast Apnl AP endonuclease/3’-repair diesterase and functional substitution in yeast by E. coli endonuclease IV. Book of abstracts, Symposium on Cellular Responses to Environmental DNA Damage, Banff,1-6 December 1991, Abstract A-20.Google Scholar
  58. 58.
    Rutten, B., and E. Gocke (1988) The “antimutagenic” effect of cinnamaldehyde is due to a transient growth inhibition. Mutat. Res. 201:97–105.PubMedCrossRefGoogle Scholar
  59. 59.
    Samson, L., and J. Cairns (1977) A new pathway for DNA repair in Escherichia coli. Nature 267:281–283.PubMedCrossRefGoogle Scholar
  60. 60.
    Shibutani, S., M. Takeshita, and A.P. Grollman (1991) Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodg. Nature 349:431–434.PubMedCrossRefGoogle Scholar
  61. 61.
    Speyer, J.F., J.D. Daram, and A.B. Lenny (1966) On the role of DNA polymerase in base selection. Cold Spring Harbor Symp. Quant. Biol. 31:693–697.PubMedCrossRefGoogle Scholar
  62. 62.
    Storz, G., M.F. Christman, H. Sies, and B.N. Ames (1987) Spontaneous mutagenesis and oxidative damage to DNA in Salmonella typhimurium. Proc. Natl. Acad. Sci. ,USA 84:8917–8921.PubMedCrossRefGoogle Scholar
  63. 63.
    Tamm, C., and Erwin Chargaff (1953) Physical and chemical properties of the apurinic acid of calf thymus. J. Biol. Chem. 203:689–694.PubMedGoogle Scholar
  64. 64.
    Tchou J., H. Kasai, S. Shibutani, M.H. Chung, J. Laval, A.P. Grollman, and S. Nishimura (1991) 8-Oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc. Natl. Acad. Sci., USA 88:4690–4694.PubMedCrossRefGoogle Scholar
  65. 65.
    von Borstel, R.C. (1969) On the origin of spontaneous mutations. Japan J. Genet. 4(Suppl.):102–105.Google Scholar
  66. 66.
    von Borstel, R.C. (1978) Measuring spontaneous mutation rates in yeast. In Methods in Cell Biology ,D.M. Prescott, ed. Academic Press, New York. Vol 20, pp. 1–24.Google Scholar
  67. 67.
    von Borstel, R.C. (1986) The relation of activation and inactivation to antimutagenic processes. In Antimutagenesis and Anticarcinogenesis Mechanisms ,D.M. Shankel, P.E. Hartman, T. Kada, and A. Hollaender, eds. Plenum Press, New York, pp. 39–43.CrossRefGoogle Scholar
  68. 68.
    von Borstel, R.C., and R.D. Mehta (1982) Nonmutagenic carcinogens. In Mutagens in Our Environment ,Marja Sora and H. Vainio, eds. Alan R. Liss, Inc., New York, pp. 47–47.Google Scholar
  69. 69.
    von Borstel, R.C., M.J. Bond, and C.M. Steinberg (1964) Spontaneous reversion rates of a super-suppressible mutant during mitosis and meiosis. Genetics 50:293 (abstract).Google Scholar
  70. 70.
    von Borstel, R.C, D.E. Graham, K.J. La Brot, and M.A. Resnick (1968) Mutator activity of an X-radiation-sensitive yeast. Genetics 60:233 (abstract).Google Scholar
  71. 71.
    Wang, W., U.G.G. Hennig, R.G. Ritzel, E.A. Savage, and R.C. von Borstel (1990) Double-stranded base-sequencing confirms the genetic evidence that the hom3-10 allele of Saccharomyces cerevisiae is a frameshift mutant, yeast 6 (Supplement): S76 (Abstract 02-10A).Google Scholar
  72. 72.
    Wink, D.A., K.S. Kasprzak, C.M. Maragos, R.K. Elespuru, M. Misra, T.M. Dunams, T.A. Cebula, W.H. Koch, A.W. Andrews, J.S. Allen, L.K. Keefer (1991) DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254:1001–1003.PubMedCrossRefGoogle Scholar
  73. 73.
    Witkin, E.M. (1967) Mutation-proof and mutation-prone modes of survival in derivatives of Escherichia coli B differing in sensitivity to ultraviolet light. Brookhaven Symp. Biol. 20:17–55.Google Scholar
  74. 74.
    Zakharov, I.A., T.N. Kozina, and I.V. Federova (1968) Increase of spontaneous mutability in ultraviolet-sensitive yeast mutants. Dokl. Akad. Sci. ,SSSR 181:470–472.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • R. C. von Borstel
    • 1
  • Ursula G. G. Hennig
    • 1
  1. 1.Department of GeneticsUniversity of AlbertaEdmontonCanada

Personalised recommendations