Mechanisms of Antimutagenesis and Anticarcinogenesis: Role in Primary Prevention

  • Silvio De Flora
  • Alberto Izzotti
  • Carlo Bennicelli
Part of the Basic Life Sciences book series (BLSC, volume 61)


Figure 1 reports the possible intervention strategies against cancer, as related to the multistep carcinogenesis process and to growth of the neoplastic mass. Similar concepts may hold true for other mutation-related conditions and, in general, for those chronico-degenerative diseases having a multifactorial origin, a multistep pathogenesis, and a long latency period. Keeping in mind that the neoplastic mass is of monoclonal origin, and assuming a regular doubling of the population of neoplastic cells, 30 cell divisions will be needed to form a mass of 10 9 cells from a single cell undergoing initiation. Very approximately, this mass may weigh 1 g. At this stage, depending on many variability factors, it may be possible to apply secondary prevention, involving early detection and therapy. Otherwise, in 3.25 further divisions the mass will be composed of 10 10 cells and weigh 10 g. At this stage, which may already involve invasion and spread of metastases, the disease will become clinically manifest and will be treated with the most suitable therapeutic protocol. This intervention will be followed by tertiary prevention, which aims at avoiding relapses, complications, metastases, and second primitive tumors. In the absence of any medical intervention, in 10 cell divisions only (i.e., from the 30th to the 40th division), the neoplastic mass will grow from 1 g to as much as 1 kg (20). Although this computer-drawn growth is a mathematical oversimplification and does not take into account possible natural regressions of the disease, it gives an idea of the paramount importance of early detection and explains the difficulties that are encountered in cancer therapy when the disease becomes clinically manifest.


Primary Prevention Ellagic Acid Sorbic Acid Tertiary Prevention Sulfamic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albini, A., and A. Colacci (1992) Inhibition of malignant cell invasion: An approach to anti-progression. This volume.Google Scholar
  2. 2.
    Ames, G.F. (1964) Uptake of amino acids by Salmonella typhimurium. Arch. Biochem. Biophys. 18:1–18.CrossRefGoogle Scholar
  3. 3.
    Ames, B.N., and L.S. Gold (1990) Chemical carcinogenesis: Too many rodent carcinogens. Proc. Natl Acad. Sci. ,USA 87:7772–7776.PubMedCrossRefGoogle Scholar
  4. 4.
    Anderson, M.E., and A. Meister (1980) Dynamic state of glutathione in blood plasma. J. Biol. Chem. 255:9530–9533.PubMedGoogle Scholar
  5. 5.
    Arimoto, S., and H. Hayatsu (1989) Role of hemin in the inhibition of mutagenic activity of 3-amino-l-methyl-5H-pyrido[4,3b]indole (Trp-P-2) and other aminoazaarenes. Mutat. Res. 213:217–226.PubMedCrossRefGoogle Scholar
  6. 6.
    Bartsch, H., B. Pignatelli, S. Calmels, and H. Ohshima (1992) Inhibition of nitrosation. This volume.Google Scholar
  7. 7.
    Bertram, J.S., L.N. Kolonel, and F.L. Meyskens, Jr. (1987) Rationale and strategies for chemoprevention of cancer in humans. Cancer Res. 47:3012–3031.PubMedGoogle Scholar
  8. 8.
    Boothman, D.A., R. Schlegel, and M.A. Pardee (1988) Anticarcinogenic potential of DNA-repair modulators. Mutat. Res. 202:393–411.PubMedCrossRefGoogle Scholar
  9. 9.
    Bronzetti, G., H. Hayatsu, S. De Flora, M.D. Waters, and D.M. Shankel, eds. (1992). This volume.Google Scholar
  10. 10.
    Brooke-Taylor, S., L.L. Smith, and G.M. Cohen (1983) The accumulation of polyamines and paraquat by human peripheral lung. Biochem. Pharmacol. 32:717–720.PubMedCrossRefGoogle Scholar
  11. 11.
    Bruce, W.R., R.P. Bird, and J.J. Rafter (1986) The effect of calcium on the pathogenicity of high fat diets to the colon. In Diet, Nutrition and Cancer ,Y. Hayashi, M. Nagao, T. Sugimura, S. Takayama, L. Tomatis, L.W. Wattenberg, and J.N. Wogan, eds. Japan Scientific Societies Press, Tokyo, Japan/VNU Science Press BV, Utrecht, The Netherlands, pp. 291–294.Google Scholar
  12. 12.
    Buhl, R., K.J. Holroyd, A. Mastrangeli, A.M. Cantin, H.A. Jaffe, F.B. Wells, C. Saltini, and R.G. Crystal (1989) Systemic glutathione deficiency in symptom-free HIV-seropositive individuals. Lancet i:1294–1297.CrossRefGoogle Scholar
  13. 13.
    Camoirano, A., G.S. Badolati, P. Zanacchi, M. Bagnasco, and S. De Flora (1988) Dual role of thiols in N-methyl-N-nitro-N-nitrosoguanidine genotoxicity. Life Science Adv. Exp. Oncol. 7:21–25.Google Scholar
  14. 14.
    Cerutti, P., G. Shah, A. Peskin, and P. Amstad (1992) Oxidant carcinogenesis and antioxidant defense. Presented at 3rd International Conference on Mechanisms of Antimutagenesis and Anticarcinogenesis, Italy, 1991.Google Scholar
  15. 15.
    Cesarone, C.F., A.I. Scovassi, L. Scarabelli, R. Izzo, M. Orunesu, and U. Bertazzoni (1988) Depletion of adenosine diphosphate-ribosyl transferase activity in rat liver during exposure to N-2-acetylaminofluorene: Effect of thiols. Cancer Res. 48:3581–3585.PubMedGoogle Scholar
  16. 16.
    Chang, J.D., P.C. Billings, and A.R. Kennedy (1985) c-myc expression is reduced in antipain-treated proliferating C3H 10T1/2 cells. Biochem. Biophys. Res. Comm. 133:830–835.PubMedCrossRefGoogle Scholar
  17. 17.
    Cooper, G.M. (1992) Oncogenes and chemoprevention. In Cancer Chemoprevention ,L.W. Wattenberg, ed. CRC Press, Boca Raton, Florida (in press).Google Scholar
  18. 18.
    Correa, P., W. Haenszel, C. Cuello, M. Archer, and S. Tannenbaum (1975) A model for gastric cancer epidemiology. Lancet ii:58–60.CrossRefGoogle Scholar
  19. 19.
    De Flora, S., ed. (1988) Role and mechanisms of inhibitor in prevention of mutation and cancer. Mutat. Res. 202:277–446.Google Scholar
  20. 20.
    De Flora, S. (1988) Editorial. Problems and prospects in antimutagenesis and anticarcinogenesis research. Mutat. Res. 202:279–283.PubMedCrossRefGoogle Scholar
  21. 21.
    De Flora, S. (1990) Mechanisms of inhibitors of genotoxicity: Relevance in preventive medicine. In Mutation and the Environment ,Part E, M.L. Mendelsohn and R.J. Albertini, eds. Wiley-Liss, Inc., New York, pp. 307–318.Google Scholar
  22. 22.
    De Flora, S., and C. Ramel (1988) Mechanisms of inhibitors of mutagenesis and carcinogenesis. Mutat. Res. 202:285–306.PubMedCrossRefGoogle Scholar
  23. 23.
    De Flora, S., and K.E. Wetterhahn (1989) Mechanisms of chromium metabolism and genotoxicity. Life Chem. Rep. 7:169–244.Google Scholar
  24. 24.
    De Flora, S., C. Bennicelli, A. Camoirano, D. Serra, M. Romano, G.A. Rossi, A. Morelli, and A. De Flora (1985) In vivo effects of Af-acetylcysteine on glutathione metabolism and on the biotransformation of carcinogenic and/or mutagenic compounds. Carcinogenesis 6:1735–1745.PubMedCrossRefGoogle Scholar
  25. 25.
    De Flora, S., M. Romano, C. Basso, M. Bagnasco, C.F. Cesarone, G.A. Rossi, and A. Morelli (1986) Detoxifying activities in alveolar macrophages of rats treated with acetylcysteine, diethyl maleate and/or Axoclor. Anticancer Res. 6:1009–1012.PubMedGoogle Scholar
  26. 26.
    De Flora, S., A. Picciotto, V. Savarino, C. Bennicelli, A. Camoirano, G. Garibotto, and G. Celle (1987) Circadian monitoring of gastric juice mutagenicity. Mutagenesis 2:115–119.PubMedCrossRefGoogle Scholar
  27. 27.
    De Flora, S., E. Hietanen, H. Bartsch, A. Camoirano, A. Izzotti, M. Bagnasco, and I. Millman (1989) Enhanced metabolic activation of chemical hepatocarcinogens in woodchucks infected with hepatitis B virus. Carcinogenesis 10:1099–1106.PubMedCrossRefGoogle Scholar
  28. 28.
    De Flora, S., P. Zanacchi, A. Izzotti, and H. Hayatsu (1991) Mechanisms of food-borne inhibitors of genotoxicity relevant to cancer prevention. In Mutagens in Food. Detection and Prevention, H. Hayatsu, ed. CRC Press, Boca Raton, Florida, pp. 157–180.Google Scholar
  29. 29.
    De Flora, S., A. Izzotti, F. D’Agostini, and C.F. Cesarone (1991) Antioxidant activity and other mechanisms of thiols in chemoprevention of mutation and cancer. Am. J. Med. 91(suppl. 3C):122–130.CrossRefGoogle Scholar
  30. 30.
    De Flora, S., M. Bagnasco, and P. Zanacchi (1992) Classification and mechanism of action of chemopreventive compounds. In Progress and Perspectives in Chemoprevention of Cancer ,G. De Palo, U. Veronesi, and M. Sporn, eds. Raven Press, New York (in press).Google Scholar
  31. 31.
    De Flora, S., G. Bronzetti, and F.H. Sobels, eds. (1992) Assessment of antimutagenicity and anticarcinogenicity. End points and systems. Mutat. Res. Special issue (in press).Google Scholar
  32. 32.
    Dixit, R., and B. Gold (1986) Inhibition of N-methyl-N-nitrosourea-induced mutagenicity and DNA methylation by ellagic acid. Proc. Natl Acad. Sci., USA 83:8039–8043.PubMedCrossRefGoogle Scholar
  33. 33.
    Feo, F., R. Garcea, L. Daino, R. Pascale, S. Frassetto, P. Cozzolino, M.G. Vannini, M.E. Ruggiu, M.M. Simile, and M. Puddu (1988) S-Adenosyl methionine antipromotion and antiprogression effect in hepatocarcinogenesis. Its association with inhibition of gene expression. In Chemical Carcinogenesis: Models and Mechanisms ,F. Feo, P. Pani, A. Columbano, and R. Garcea, eds. Plenum Press, New York, pp. 407.CrossRefGoogle Scholar
  34. 34.
    Friedman, T. (1989) Progress toward human gene therapy. Science 244:1275–1281.CrossRefGoogle Scholar
  35. 35.
    Guevara, A.P., C. Lim-Sylianco, F. Dayrit, and P. Finch (1990) Antimutagens from Marmodica carantia. Mutat. Res. 230:121–126.PubMedCrossRefGoogle Scholar
  36. 36.
    Harris, H. (1988) The analysis of malignancy by cell fusion: The position in 1988. Cancer Res. 48:3302–3306.PubMedGoogle Scholar
  37. 37.
    Hartman, P.E., and D.M. Shankel (1990) Antimutagens and anticarcinogens: A survey of putative interceptor molecules. Env. Molec. Mutagen. 15:145–182.CrossRefGoogle Scholar
  38. 38.
    Hayatsu, H., S. Arimoto, and T. Negishi (1988) Dietary inhibitors of mutagenesis and carcinogenesis. Mutat. Res. 202:429–446.PubMedCrossRefGoogle Scholar
  39. 39.
    Helene, C. (1991) Rational design of sequence-specific oncogene inhibitors based on antisense and antigene nucleotides. Eur. J. Cancer 27:1466–1471.PubMedCrossRefGoogle Scholar
  40. 40.
    Hochstein, P., and A. Atallah (1988) The nature of oxidants and antioxidant systems in the inhibition of mutation and cancer. Mutat. Res. 202:363–375.PubMedCrossRefGoogle Scholar
  41. 41.
    Inoue, T., K. Morita, and T. Kada (1981) Purification and properties of a plant desmutagenic factor for the mutagenic principle of tryptophan pyrolysates. Agr. Biol. Chem. 45:345–353.CrossRefGoogle Scholar
  42. 42.
    Jensen, D.E., G.J. Stelman, and A. Spiegel (1987) Species differences in blood-mediated nitrosocimetidine denitrosation. Cancer Res. 47:353–359.PubMedGoogle Scholar
  43. 43.
    Jongen, W.M.F., R.J. Topp, H.G.M. Tiedink, and E.J. Brink (1987) A cocultivation system as model for in vitro studies of modulating effects of naturally occurring indoles on the genotoxicity of model compounds. Toxicol. In Vitro 1:105–110.Google Scholar
  44. 44.
    Kada, T., T. Inoue, and N. Namiki (1982) Environmental desmutagens and antimutagens. In Environmental Mutagenesis and Plant Biology ,E.J. Klekowski, ed. Praeger, New York, pp. 137–151.Google Scholar
  45. 45.
    Kaufmann, W.K. (1989) Pathways of human cell post-replication repair. Carcinogenesis 10:1–11.PubMedCrossRefGoogle Scholar
  46. 46.
    Kensler, T.W., P.A. Egner, M.A. Trush, E. Bueding, and M.D. Groopman (1985) Modification of aflatoxin B1 binding to DNA in vivo in rats fed phenolic antioxidants and dithiothione. Carcinogenesis 6:759–763.PubMedCrossRefGoogle Scholar
  47. 47.
    Klohs, W.D., and R.W. Steinkampf (1988) Possible link between the intrinsic drug resistance of colon tumors and a detoxification mechanism of intestinal cells. Cancer Res. 48:3025–3030.PubMedGoogle Scholar
  48. 48.
    Kuroda, Y., D.M. Shankel, and M.D. Waters, eds. (1990) Antimutagenesis and Anticarcinogenesis Mechanisms, II. Plenum Press, New York and London, 485 pp.Google Scholar
  49. 49.
    Nakayasu, M., H. Shima, S. Aonuma, H. Nakagama, M. Nagao, and T. Sugimura (1988) Deletion of transfected oncogenes from NIH 3T3 transformants by inhibitors of poly(ADP-ribose)polymerase. Proc. Natl. Acad. Sci. ,USA 85:9066–9070.PubMedCrossRefGoogle Scholar
  50. 50.
    Newmark, H.L., M.J. Wargovich, and W.R. Bruce (1984) Colon cancer and dietary fat, phosphate and calcium: An hypothesis. J. Nad. Cancer Inst. 72:1323–1325.Google Scholar
  51. 51.
    Nussenzweig, M.C., E.V. Schmidt, A.C. Shaw, E. Sinn, J. CamposTorres, B. Mathey-Prevot, P.K. Pattengale, and P. Leder (1988) A human immunoglobulin gene reduces the incidence of lymphomas in cmyc-bearing transgenic mice. Nature 336:446–450.PubMedCrossRefGoogle Scholar
  52. 52.
    Owens, R.A., and P.E. Hartman (1986) Glutathione: A protective agent in Salmonella typhimurium and Escherìchia coli as measured by mutagenicity and by growth delay assay. Env. Mutagen. 8:659–673.CrossRefGoogle Scholar
  53. 53.
    Petrilli, F.L., G.A. Rossi, A. Camoirano, M. Romano, D. Serra, C. Bennicelli, A. De Flora, and S. De Flora (1986) Metabolic reduction of chromium by alveolar macrophages and its relationships to cigarette smoke. J. Clin. Invest. 77:1917–1924.PubMedCrossRefGoogle Scholar
  54. 54.
    Pryor, W.A. (1986) Cancer and free radicals. In Antimutagenesis and Anticarcinogenesis Mechanisms ,D.M. Shankel, P.E. Hartman, T. Kada, and A. Hollaender, eds. Plenum Press, New York, pp. 4559.Google Scholar
  55. 55.
    Ramel, C., U.K. Alekperov, B.N. Ames, T. Kada, and L.W. Wattenberg (1986) Inhibitors of mutagenesis and their relevance to carcinogenesis. Mutat. Res. 168:47–65.PubMedCrossRefGoogle Scholar
  56. 56.
    Rao, D.R., S.R. Pulusani, and C.B. Chawan (1986) Natural inhibitors of carcinogenesis: Fermented milk products. In Diet, Nutrition and Cancer: A Critical Evaluation, Vol. II. Micronutrients, Nonnutritive Dietary Factors, and Cancer ,B.S. Reddy and L.A. Cohen, eds. CRC Press, Boca Raton, Florida, pp. 63–75.Google Scholar
  57. 57.
    Reddy, B.S. (1986) Diet and colon cancer: Evidence from human and animal model studies. In Diet, Nutrition and Cancer: A Critical Evaluation, Vol. I, Macronutrients and Cancer ,B.S. Reddy and L.A. Cohen, eds. CRC Press, Boca Raton, Florida, pp. 47–65.Google Scholar
  58. 58.
    Reitsma, P.H., P.G. Rothberg, S.M. Astrin, J. Trial, Z. Bar Shavit, A. Hall, S.L. Teitelbaum, and A.J. Kahn (1983) Regulation of myc gene expression in HL-60 leukaemia cells by a vitamin D metabolite. Nature 306:492–494.PubMedCrossRefGoogle Scholar
  59. 59.
    Roe, F.J.C. (1989) Non-genotoxic carcinogenesis: Implications for testing and extrapolation to man. Mutagenesis 4:407–411.PubMedCrossRefGoogle Scholar
  60. 60.
    Schaffer, W.R., R. Kim, T. Sterne, J. Thorner, S.-H. Kim, and J. Rine (1989) Genetic and pharmacological suppression of oncogenic mutations in ras genes of yeast and humans. Science 245:379–385.CrossRefGoogle Scholar
  61. 61.
    Shankel, D.M., P.E. Hartman, T. Kada, and A. Hollaender, eds. (1986) Antimutagenesis and Anticarcinogenesis Mechanisms ,Plenum Press, New York and London, 605 pp.Google Scholar
  62. 62.
    Silbart, I.K., and D.F. Keren (1989) Reduction of intestinal absorption by carcinogen-specific secretory immunity. Science 243:14621464.CrossRefGoogle Scholar
  63. 63.
    Simic, M.G. (1988) Mechanisms of inhibition of free radical processes in mutagenesis and carcinogenesis. Mutat. Res. 202:377–386.PubMedCrossRefGoogle Scholar
  64. 64.
    Sparnins, V.L., P.L. Venegas, and L.W. Wattenberg (1982) Glutathione 5-transferase activity: Enhancement by compounds inhibiting chemical carcinogenesis and by dietary constituents. J. Natl Cancer Inst. 68:493–496.PubMedGoogle Scholar
  65. 65.
    Talalay, P., and H.J. Prochaska (1987) Mechanisms of induction of NAD(P)H:quinone reductase. Chem. Scripta 27A:61–66.Google Scholar
  66. 66.
    Thorgeirsson, S.S., B.E. Huber, S. Sorrell, A. Fojo, I. Pastan, and M.M. Gottesman (1987) Expression of the multidrug-resistant gene in hepatocarcinogenesis and regenerating rat liver. Science 236:1120–1122.PubMedCrossRefGoogle Scholar
  67. 67.
    Wattenberg, L.W. (1992) Chemoprevention of cancer by naturally occurring and synthetic compounds. In Cancer Chemoprevention ,L.W. Wattenberg, M. Lipkin, C. Boone, and G. Kelloff, eds. CRC Press, Boca Raton, Florida (in press).Google Scholar
  68. 68.
    Weinstein, I.B. (1988) Strategies for inhibiting multistage carcinogenesis based on signal transduction pathways. Mutat. Res. 202:413–420.PubMedCrossRefGoogle Scholar
  69. 69.
    Weisburger, J.H., B.S. Reddy, D.P. Rose, L.A. Cohen, M.E. Kendall, and E.L. Wynder (1992) Protective mechanisms of dietary fibers in nutritional carcinogenesis. This volume.Google Scholar
  70. 70.
    Weissman, B.E., P.J. Saxon, S.R. Pasquale, G.R. Jones, A.G. Geiser, and E.J. Stanbridge (1987) Introduction of a normal human chromosome 11 into a Wilm’s tumor cell line controls its tumorigenic expression. Science 236:175–180.PubMedCrossRefGoogle Scholar
  71. 71.
    Westin, E.H., F. Wong-Staal, E.P. Gelmann, R. Dalla Favera, T.S. Papas, J.A. Lautenberger, A. Eva, E.P. Reddy, S.R. Tronick, S.A. Aaronson, and R.C. Gallo (1982) Expression of cellular homologues of retroviral onc genes human hemopoietic cells. Proa Natl Acad. Sci. ,USA 79:2490–2494.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Silvio De Flora
    • 1
  • Alberto Izzotti
    • 1
  • Carlo Bennicelli
    • 1
  1. 1.Institute of Hygiene and Preventive MedicineUniversity of GenoaGenoaItaly

Personalised recommendations