Skip to main content

Biological Effectiveness of Recoil Protons from Neutrons of Energy 5 keV to 5 MeV

  • Chapter
Advances in Neutron Capture Therapy

Abstract

Several authors, namely Auxier (1968) and McGregor and Allen (1986), have convincingly suggested, on physical grounds, that for proton energies below 15 keV the average energy required to produce an ion pair in aqueous media approaches infinity. Physical theory and some experimental data indicate that the charge state of the proton is so close to zero that nearly all energy transfer is in the form of molecular excitations (Janni, 1982). Ziegler (1985) has also provided data on range energy relationships and stopping power for low energy protons. These latter estimates use codes in which the effective charge on the proton, Z*, is assumed to be 1.0, so no additional light is shed by the Ziegler table on the physical basis for deducing the biological effectiveness of protons below 15 keV. It is our objective to review both the physical background and to compare theory with experiment to estimate the relative biological effectiveness of low energy protons by examining the literature on biological effects of very low energy protons and to make comparisons with the physical data. At the same time, since we were convinced that a careful analysis of late effects RBEs for recoil protons in the energy range 10 keV to 100 keV had not been previously done, this task would also be undertaken.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • J. A. Auxier, W. S. Snyder and T. D. Jones, (1968). Neutron interactions and penetration in tissue. In, “Radiation Dosimetry, Volume I, Fundamentals,” Attix, Roesch and Tochilin Eds,. Academic Press, New York, pp 275–317.

    Google Scholar 

  • M. Belli, R. Cherubini, S. Finotto, G. Moschini, O. Sapora, G. Simone andM. A. Tabocchini (1989). RBELET relationship for inactivation of V79 Chinese hamster cells irradiated by proton beams. Int. J. Radial. Biol. 55,93–104.

    Article  CAS  Google Scholar 

  • E. A. Blakely, F. Q. H. Ngo, S.B. Curtis and C. A. Tobias (1984). Heavy ion radiobiology: Cellular studies. Adv. in Radiat. Biol. 11 295–389.

    CAS  Google Scholar 

  • J. J. Broerse, G. W. Barendsen and G. R. van Kersen (1967). Survival of cultured human cells after irradiation with fast neutrons of different energies in hypoxic and oxygenated conditions. Int. J. Radiat. Biol. 13 559–572.

    Article  Google Scholar 

  • G. Constantine, L. J. Baker, L.P. G. F. Moore and N. P. Taylor (1985). The depth enhanced neutron source, In, “Neutron Capture Therapy: Proceedings of the Second International Symposium on Neutron Capture Therapy” (H. llatanka, Ed.), pp. 209–222. MTP Press, Norwell, Maine.

    Google Scholar 

  • G. Constantine, L. J. Baker and N. P. Taylor (1986). Improved methods for the generation of 24.5 keV neutron beams with possible application to boron neutron capture therapy. Nuclear Instr. & Methods in Phys. Res. A250 565–572.

    Article  CAS  Google Scholar 

  • E. J. Hall, J. K. Novak, A. M. Kellerer, H. H. Rossi, S. Marino and L. J. Goodman (1975). RBE as a function of neutron energy. I. Experimental observations. Radial - . Res. 64 245–255.

    Article  CAS  Google Scholar 

  • J. W. Hopewell, D. W. H. Barnes, M. E. C. Robbins, M. Corp, J. M. Sanson, C. M. A. Young and G. Wiernik (1990). The relative biological effectiveness of fractionated doses of fast neutrons (42 MeVd→Be) for normal tissues in the pig. II. Late effects on cutaneous and subcutaneous tissues. Brit. J. Radiol. 63, 760–770.

    Article  PubMed  CAS  Google Scholar 

  • S. Hornsey (1991) Experimental central nervous system injury from fast neutrons. In, “Radiation Injury to the Nervous System” P. H. Gutin, S. A. Leibel and G. E. Sheline, Eds. pp. 137–148. Raven Press, New York.

    Google Scholar 

  • ICRU (International Commission on Radiological Units, 1992). “Photon, Electron, and Neutron Interaction Data for Body Tissues”, Report 46 Bethesda, MD.

    Google Scholar 

  • J. F. Janni (1982). Proton range-energy tables, 1 keV to 10 GeV. Atomic Data and Nuclear Data Tables, 27,147–339.

    Article  CAS  Google Scholar 

  • G. E. Laramore and M. Austin-Seymour (1992). Fast neutron radiotherapy in relation to the radiation sensitivity of human organ systems. In. “Relative Radiosensitivities of Human Organs Systems” vol III. K. I. Altman and J. Lett., Eds. Academic Press, New York (in press).

    Google Scholar 

  • S. A. Leibel and G. E. Sheline (1991). Tolerance of the brain and spinal cord to conventional irradiation. In, “Radiation Injury to the Nervous System” P. H. Gutin, S. A. Leibel and G. E. Sheline, Eds. pp. 239–256. Raven Press, New York.

    Google Scholar 

  • B. J. McGregor and B. J. Allen (1986). Filtered-beam dose distribution for boron neutron capture therapy of brain tumours. In, “International Symposium on Neutron Capture Therapy, Proceedings” Fairchild and Brownell, Eds, pp. 14–25. Brookhaven National Laboratory, Upton, New York.

    Google Scholar 

  • G. R. Morgan, C. J. Roberts, and P. D. Holt (1989). The radiobiology of a nearly pure, high intensity beam of 24 keV neutrons. Strahlenther. Onkol. 165 196–198.

    PubMed  CAS  Google Scholar 

  • G. R. Morgan, A. J. Mill, C. J. Roberts, S. Newman and P.D. Holt (1988). The radiobiology of 24 keV neutrons. Brit. J. Radiol. 61 1127–1135.

    Article  PubMed  CAS  Google Scholar 

  • A. Rodriguez, E. L. Alpen and P. Powers-Risius (1992). The RBE-LET relationship for rodent intestinal crypt cell survival, testes weight loss and multicellular spheroid cell survival after heavy ion irradiation. Radiat. Res. 132 184–192.

    Article  PubMed  CAS  Google Scholar 

  • J. F. Ziegler, J. P. Biersack and U. Littmark (1985) “The Stopping Power and Range of Ions in Solution”, J. F. Ziegler, Ed. Vol. 1, Pergamon Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alpen, E.L., Frankel, K.A. (1993). Biological Effectiveness of Recoil Protons from Neutrons of Energy 5 keV to 5 MeV. In: Soloway, A.H., Barth, R.F., Carpenter, D.E. (eds) Advances in Neutron Capture Therapy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2978-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2978-1_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6296-8

  • Online ISBN: 978-1-4615-2978-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics