Advertisement

Flowing Afterglow Studies of Electron-Ion Recombination Using Langmuir Probes and Optical Spectroscopy

  • Nigel G. Adams
Part of the NATO ASI Series book series (NSSB, volume 313)

Abstract

For many years, the experimental data obtained for dissociative electron-ion recombination
$$ AB{H^ + } + e \to A + BH $$
(1)
have been limited to rate coefficients, αe, determined predominantly using stationary and flowing afterglow techniques, with the electron density being measured using microwave frequency shift and electrostatic Langmuir probe techniques1–4, and more recently infrared absorption.5 A body of data is also available from the merged beam technique, obtained by measuring reaction cross-sections and then integrating over a Boltzmann distribution to obtain the effective rate coefficients (note that, in this case, the integration is only over the kinetic energy of the reactants; the internal energy remaining constant).4,6 There is generally good agreement between the αe determined using different techniques, however, it has recently become apparent that there are several discrepancies remaining.7

Keywords

Laser Induce Fluorescence Flow Tube Langmuir Probe Dissociative Recombination Laser Induce Fluorescence Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.N. Bardsley and M.A. Biondi, Adv. At. Mol. Phys. 6:1 (1970).CrossRefGoogle Scholar
  2. 2.
    R. Johnsen, Int. J. Mass Spectrom. Ion Proc. 81:67 (1987).CrossRefGoogle Scholar
  3. 3.
    N.G. Adams and D. Smith, in:“Rate Coefficients in Astrochemistry” T.J. Millar and D.A. Williams, eds. Kluwer Academic, Dordrecht (1988) p.173.Google Scholar
  4. 4.
    J.B.A. Mitchell, Phys. Repts. 186:215 (1990).CrossRefGoogle Scholar
  5. 5.
    T. Amano, J. Chem. Phys. 92:6492 (1990).CrossRefGoogle Scholar
  6. 6.
    J.B.A. Mitchell and J.W. McGowan, in:“Physics of Ion-Ion and Electron-Ion Collisions” F. Brouillard and J.W. McGowan, eds. Plenum, New York (1983) p.279.CrossRefGoogle Scholar
  7. 7.
    This volume.Google Scholar
  8. 8.
    A. Dalgarno and J.H. Black, Rept. Prog. Phys. 39:573 (1976).CrossRefGoogle Scholar
  9. 9.
    E. Herbst, in:“Dissociative Recombination: Theory, Experiment and Applications” J.B.A. Mitchell and S.L. Guberman, eds. World Scientific, Singapore (1989) p.303.Google Scholar
  10. 10.
    S.K. Atreya, “Atmospheres of the Outer Planets and their Satellites” Springer-Verlag, Berlin (1986).CrossRefGoogle Scholar
  11. 11.
    A. Dalgarno, in:“Rate Coefficients in Astrochemistry” T.J. Millar and D.A. Williams, eds. Kluwer Academic, Dordrecht (1988) p.321.CrossRefGoogle Scholar
  12. 12.
    J.L. Fox, in:“Dissociative Recombination: Theory, Experiment and Applications” J.B.A. Mitchell and S.L. Guberman, eds. World Scientific, Singapore (1989) p.264.Google Scholar
  13. 13.
    D. Kley, G.M. Lawrence and E.J. Stone, J. Chem. Phys. 66:4157 (1977).CrossRefGoogle Scholar
  14. 14.
    E.C. Zipf, J. Geophys. Res. 85:4232 (1980).CrossRefGoogle Scholar
  15. 15.
    J.L. Queffelec, B.R. Rowe, F. Vallee, J.C. Gomet and M. Morlais, J Chem. Phys. 91:5335 (1989).CrossRefGoogle Scholar
  16. 16.
    J.L. Queffelec, B.R. Rowe, M. Morlais, J.C. Gomet and F. Vallee, Planet. Space Sci. 33:263 (1985).CrossRefGoogle Scholar
  17. 17.
    R.A. Gutcheck and E.C. Zipf, J. Geophys. Res. 78:5429 (1973).CrossRefGoogle Scholar
  18. 18.
    F. Vallee, B.R. Rowe, J.C. Gomet, J.L. Queffelec and M. Morlais, Chem. Phys. Letts. 124:317 (1986).CrossRefGoogle Scholar
  19. 19.
    B.R. Rowe, F. Vallee, J.L. Queffelec, J.C. Gomet and M. Morlais, J. Chem. Phys. 88:845 (1988).CrossRefGoogle Scholar
  20. 20.
    N.G. Adams, C.R. Herd and D. Smith, J. Chem. Phys. 91:963 (1989).CrossRefGoogle Scholar
  21. 21.
    C.R. Herd, N.G. Adams and D. Smith, Ap. J. 349:388 (1990).CrossRefGoogle Scholar
  22. 22.
    N.G. Adams, C.R. Herd, M. Geoghegan, D. Smith, A. Canosa, J.C. Gomet, B.R. Rowe, J.L. Queffelec and M. Morlais, J. Chem. Phys. 94:4852 (1991).CrossRefGoogle Scholar
  23. 23.
    N.G. Adams, in:“Advances in Gas Phase Ion Chemistry” Vol.1, N.G. Adams and L.M. Babcock, eds. JAI Press, Greenwich, Connecticut (1992), p.271.Google Scholar
  24. 24.
    H. Hus, F.B. Youssif, A. Sen and J.B.A. Mitchell, Phys. Rev. A38:658 (1988).CrossRefGoogle Scholar
  25. 25.
    R. Johnsen, This volume.Google Scholar
  26. 26.
    D. Smith, N.G. Adams, A.G. Dean and M.J. Church, J. Phys. B. 8:141 (1975).CrossRefGoogle Scholar
  27. 27.
    N.G. Adams, Int. J. Mass Spectrom. Ion Proc., (1993) in preparation.Google Scholar
  28. 28.
    W. Lindinger, A.L. Schmeltekopf and F.C. Fehsenfeld, J. Chem. Phys. 61:2890 (1974).CrossRefGoogle Scholar
  29. 29.
    E.E. Ferguson, F. C. Fehsenfeld and A.L. Schmeltekopf, Adv. At. Mol. Phys. 5:1 (1969).CrossRefGoogle Scholar
  30. 30.
    A.L. Farragher, Trans. Farad. Soc. 66:1411 (1970).CrossRefGoogle Scholar
  31. 31.
    H.S. Lee, M. Drucker and N.G. Adams, Int. J. Mass Spectrom. Ion Proc. 116:101 (1992).CrossRefGoogle Scholar
  32. 32.
    N.G. Adams, D. Smith and K. Giles, Int. J. Mass Spectrom. Ion Proc. (1992) submitted.Google Scholar
  33. 33.
    C.R. Blakely, M.L. Vestal and J.H. Futrell, J. Chem. Phys. 66:2392 (1977).CrossRefGoogle Scholar
  34. 34.
    N.G. Adams, D. Smith and E. Alge, J. Chem. Phys. 81:1778 (1984).CrossRefGoogle Scholar
  35. 35.
    D.R. Bates and A. Dalgarno, in:“Atomic and Molecular Processes” D.R. Bates, ed. Academic Press, New York (1962) p.245.CrossRefGoogle Scholar
  36. 36.
    B.R. Rowe and J.L. Queffelec, in:“Dissociative Recombination: Theory, Experiment and Applications” J.B.A. Mitchell and S.L. Guberman, eds. World Scientific, Singapore (1989) p.151.Google Scholar
  37. 37.
    B.R. Rowe, A. Canosa, J.C. Gomet, J.L. Queffelec and M. Morlais, Proceedings of the Symposium No. 228, Pacifichem 89, “Chemistry and Spectroscopy of Interstellar Molecules” Univ. of Tokyo Press p.161.Google Scholar
  38. 38.
    M. Dudeck, G. Poissant, B.R. Rowe, J.L. Queffelec and M. Morlais, J. Phys. D 16:995 (1983).CrossRefGoogle Scholar
  39. 39.
    K.R. German, J. Chem. Phys. 63:5252 (1975).CrossRefGoogle Scholar
  40. 40.
    N.G. Adams and D. Smith, Chem. Phys. Letts. 144:11 (1988).CrossRefGoogle Scholar
  41. 41.
    B.S. Agrawalla and D.W. Setser, in:“Gas Phase Chemiluminescence and Chemi-ionization” A. Fontijn, ed. Elsevier, Amsterdam (1985) p.157.Google Scholar
  42. 42.
    B.L. Foley, N.G. Adams and H.S. Lee, J. Phys. Chem. (1992) submitted.Google Scholar
  43. 43.
    D. Smith and N.G. Adams, in:“Swarms of Ions and Electrons in Gases” W. Lindinger, T.D. Mark and F. Howorker, eds. Springer-Verlag, Vienna (1984) p.284.Google Scholar
  44. 44.
    Y. Ikezoe, S. Matsuonka, M. Takabe and A..A. Viggiano, “Gas Phase Ion-Molecule Reaction Rate Constants through 1986” Maruzen Company, Tokyo (1987).Google Scholar
  45. 45.
    S.R. Langhoff, E.F. van Dishoeck, R. Wetmore and A. Dalgarno, J. Phys. Chem. 77:1379 (1982).CrossRefGoogle Scholar
  46. 46.
    N.G. Adams and D. Smith, Int. J. Mass Spectrom. Ion Proc. 81:273 (1987).CrossRefGoogle Scholar
  47. 47.
    D. Smith, N.G. Adams and M. J. Henchman, J. Chem. Phys. 72:4951 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Nigel G. Adams
    • 1
  1. 1.Department of ChemistryUniversity of GeorgiaAthensUSA

Personalised recommendations