Polyatomic Ion Dissociative Recombination

  • David R. Bates
Part of the NATO ASI Series book series (NSSB, volume 313)

Abstract

Although a convincing demonstration of quantitative agreement between the results of ab initio computations and laboratory measurements is still regrettably lacking and although analysis of nightglow data casts a shadow of unease (see Bates 1992c) it is generally believed that the theory of the dissociative recombination of diatomic ions is now effectively complete. The dissociative recombination of polyatomic ions is naturally a more complicated phenomenon and some of the theory is at an intuitive qualitative stage.

Keywords

Methane Microwave Argon Recombination Helium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, N.G., Bohm, D.K. and Ferguson, E.E., 1970, Reactions of He2 +, Ne2 +, Ar2 + and rare gas hydride ions with hydrogen at 200 K, J. Chem. Phys. 52: 5101.CrossRefGoogle Scholar
  2. Adams, N.G., Herd, C.R., Geoghegan, M., Smith, D., Canosa, A., Gomet, J.C., Rowe, B.R.,Queffelec, J.L. and Moralis, M., 1991, Laser induced fluorescence and vacuum ultraviolet spectroscopic studies of H atom production in the dissociative recombination of some protonated ions, J. Chem. Phys. 94, 4852.CrossRefGoogle Scholar
  3. Adams, N.G., Herd, C.R. and Smith, D., 1989, Development of the flowing afterglow/Langmuir probe technique for studying the neutral products of dissociative recombination using spectroscopic techniques: OH production in the HCO2 + + e reaction, J. Chem. Phys. 91: 963.CrossRefGoogle Scholar
  4. Adams, N.G. and Smith, D., 1988a, Measurements of the dissociative recombination coefficients for several polyatomic ion species at 300 K, Chem. Phys. Leu. 144: 11.CrossRefGoogle Scholar
  5. Adams, N.G. and Smith, D., 1988b, Laboratory studies of dissociative recombination and mutual neutralization and their relevance to interstellar chemistry in, “Rate Coefficients in Astrochemistry,” T.J. Millar and D.A. Williams, eds., Kluwer Academic, Dordrecht.Google Scholar
  6. Adams, N.G. and Smith, D., 1989, FALP studies of positive ion/electron recombination, in: “Dissociative Recombination; Theory, Experiment and Applications,” J.B.A. Mitchell and S.L. Guberman, eds., World Scientific, Singapore.Google Scholar
  7. Adams, N.G., Smith, D. and Alge, E., 1984, Measurements of dissociative recombination of H3 +, HCO+, N2H+ and CH5 + at 95 and 300 K using the FALP apparatus. J. Chem. Phys. 81: 1778.CrossRefGoogle Scholar
  8. Amano, T., 1990, The dissociative recombination rate coefficient of H3 +, HN2 + and HCO+. J. Chem. Phys. 92: 6492.CrossRefGoogle Scholar
  9. Bardsley, J.N., 1967, The ionization of molecules near threshold, Chem. Phys. Lett. 1: 229.CrossRefGoogle Scholar
  10. Bardsley, J.N., 1968, The theory of dissociative recombination, J. Phys. B. (Proc. Phys. Soc.). 1: 365.Google Scholar
  11. Bates, D.R., 1950, Dissociative recombination, Phys. Rev. 78: 492.CrossRefGoogle Scholar
  12. Bates, D.R., 1991a, Relative importance of direct and indirect dissociative recombination, J. Phys. B. At. Mol. Opt. Phys. 24: 695.CrossRefGoogle Scholar
  13. Bates, D.R., 1991b, Super-dissociative recombination, J. Phys. B. At. Mol. Opt. Phys. 24: 703.CrossRefGoogle Scholar
  14. Bates, D.R., 1991c, Dissociative recombination of polyatomic ions, J. Phys. B. At. Mol. Opt. Phys. 24: 3267.CrossRefGoogle Scholar
  15. Bates, D.R., 1992a, Single-electron transitions and cluster ion super-dissociative recombination, J. Phys. B. At. Mol. Opt. Phys. 25 (in press).Google Scholar
  16. Bates, D.R., 1992b, Dissociative recombination when potential energy curves do not cross, J. Phys. B. At. Mol. Opt. Phys. 25 (submitted).Google Scholar
  17. Bates, D.R., 1992c, Emission of forbidden red and green lines of atomic oxygen from the nocturnal F region, Planet Space Sci. 40: 893.CrossRefGoogle Scholar
  18. Berry, R.S., 1966, Ionization of molecules at low energies, J. Chem. Phys. 45: 1228CrossRefGoogle Scholar
  19. Canosa, A., Gomet, J.C., Rowe, B.R. and Queffelec, J.L., 1991a, Flowing afterglow Langmuir probe measurement of the N2 + (v = 0) dissociative recombination rate oefficient. J.. Chem. Phys. 94: 7159.CrossRefGoogle Scholar
  20. Canosa, A., Rowe, R., Mitchell, J.B.A., Gomet, J.C. and Rebrion, C., 199lb, New measurement of H3 + and HCO+ dissociative recombination rate coefficients. Astron. Astrophys. 248: L19.Google Scholar
  21. Cao, Y.S. and Johnsen, R., 1991, Recombination of N4 + ion with electrons, J. Chem. Phys. 95: 7356.CrossRefGoogle Scholar
  22. Connor, T.R. and Biondi, M.A., 1965, Dissociative recombination in neon: spectral line shape studies, Phys. Rev. 140: A778.CrossRefGoogle Scholar
  23. Dulaney, J.L., Biondi, M.A. and Johnsen, R., 1988, Electron-temperature dependence of the recombination of electrons with O4 +ions, Phys. Rev. A37: 2539.CrossRefGoogle Scholar
  24. Ganguli, B., Biondi, M.A., Johnsen, R. and Dulaney, J.L., 1988, Electron-temperature dependence of the recombination of HCO+ ions with electrons, Phys. Rev. A37: 2543.CrossRefGoogle Scholar
  25. Geoghegan, M., Adams, N.G. and Smith, A., 1991, Determination of the electron-ion dissociative recombination coefficients for several molecular ions at 300 K, J. Phys. B. At. Mol. Opt. Phys. 24: 2589.CrossRefGoogle Scholar
  26. Guberman, S.L. and Giusti-Suzor, A., 1991, The generation of O(1S) from the dissociative recombination of O2 +, J. Chem. Phys. 95: 2602.CrossRefGoogle Scholar
  27. Herd, C.R., Adams, N.G. and Smith, D., 1990, OH production in the dissociative recombination of H3O+, HCO2 + and N2OH+: comparison with theory and interstellar implications, Astrophys. J. 349: 388.CrossRefGoogle Scholar
  28. Huang, C-M., Biondi, M.A. and Johnsen, R., 1976, Recombination of elctrons with NH4 + (NH3)n - series ions, Phys. Rev. A. 14: 98L.Google Scholar
  29. Huang, C-M., Whitaker, M., Biondi, M.A. and Johnsen, R., 1978, Electron temperature dependence of recombination of electrons with H3O+ (H2O)n - series ions, Phys. Rev. 18: 64.CrossRefGoogle Scholar
  30. Janoschek, R., 1976, Calculated vibrational spectra of hydrogen bonded systems, in: “The Hydrogen Bond,”, S. Schuster, G. Zondel and C. Sandorfy, eds., North Holland, Amsterdam.Google Scholar
  31. Kramer, W.P. and Hazi, A.U., 1989, Dissociative recombination of HCO+: complete active spaced (CAS) SCF electronic structure calculations, in “Dissociative Recombination: Theory, Experiment and Applications, J.B.A. Mitchell and S.L. Guberman, eds., World Scientific, Singapore.Google Scholar
  32. Leu, M.T., Biondi, M.A. and Johnsen, R., 1973a, Measurements of the recombination of electrons with H3O+ (H2O)n - series ions, Phys. Rev. A7: 64.Google Scholar
  33. Leu, M.T., Biondi, M.A. and Johnsen, R., 1973b, Measurement of the recombination of electrons with HCO+ ions, Phys. Rev. A. 8: 420.CrossRefGoogle Scholar
  34. Macdonald, J.A., Biondi, M.A. and Johnsen, R., 1983, Electron temperature dependence of the dissociative recombination of Ne3 + ions with electrons. J. Phys. B: At. Mol. Phys. 16: 4273.CrossRefGoogle Scholar
  35. Macdonald, J.A., Biondi, M.A. and Johnsen, R., 1984, Recombination of electrons with H3 + and H5 + ions, Planet. Space. Sci. 32: 651.CrossRefGoogle Scholar
  36. McWeeny, R., 1979, “Coulson’s Valence,” Oxford University Press, Oxford.Google Scholar
  37. Mul, P.M., Mitchell, J.B.A., D’Angelo, V.S., Defrance, P., McGowan, J.W. and Frolich, H.r., 1981, Merged electron-ion beam experiments IV. Dissociative recombination for the methane group CH+…CH5 +, J. Phys. B. At. Kal. Phys. 14: 1353.CrossRefGoogle Scholar
  38. Michels, H.H. and Hobbs, R.H., 1984, Low temperature dissociative recombination of e + H3 +, Astrophys. J. 286: L27.CrossRefGoogle Scholar
  39. Mitchell, J.B.A., 1990, The dissociative recombination of molecular ions, Phys. Reports. 186: 215.CrossRefGoogle Scholar
  40. Mitchell, J.B.A. and Rowe, B.R., 1991, New experiments on H3 +recombination, in “Proc 3rd US-Mexico Symposium on Atomic Collision Processes,” C. Cisneros and T.J. Morgan, eds., World Scientific, Singapore.Google Scholar
  41. Philbrick, J., Mehr, F.J. and Biondi, M.A., 1969, Electron temperature dependence of recombination of Ne2 + ions with electrons, Phys. Rev. 181: 271.CrossRefGoogle Scholar
  42. Rowe, B.R., Gomet, J.C., Canosa, A., Rebrion, C. and Mitchell, J.B.A., 1992, A further study of HCO+ dissociative recombination, J. Chem. Phys. 96: 1105.CrossRefGoogle Scholar
  43. Schaad, L.S. and Hicks, W.V., 1974, Gaussion basis configuration of H3 +: a bound 3Σu + excited level, J. Chem. Phys. 61: 1934 (Erratum 63: 2270).Google Scholar
  44. Talbi, D., Hickman, A.P., Pauzat, F., Ellinger, Y. and Berthier, G., 1989, A tentative interpretation for the difference in the abundance ratios HCO+/CO and HCS+/CS in interstellar space, Astrophys. J. 339: 231.CrossRefGoogle Scholar
  45. Wang, X. and Freed, K.F., 1989, Quasidegenerate many body perturbation theory of CH2. J.Chem. Phys. 91: 1142.CrossRefGoogle Scholar
  46. Whitaker, M., Biondi, M.A. and Johnsen, R., 1981a, Electron-temperature dependence of dissociative recombination of electrons with CO+ (CO)n series ions. Phys. Rev. A23: 1481.CrossRefGoogle Scholar
  47. Whitaker, M., Biondi, M.A. and Johnsen, R., 1981b, Electron temperature dependence of dissociative recombination of electrons with N2 +.N2 dimer ions. Phys. Rev. A. 24: 743.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • David R. Bates
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsQueen’s UniversityBelfastUK

Personalised recommendations