Role of the Carotid Sinus Nerve and of Dopamine in the Biochemical Response of Sympathetic Tissues to Long-Term Hypoxia

  • Y. Dalmaz
  • J. M. Pequignot
  • J. M. Cottet-Emard
  • A. Vouillarmet
  • L. Peyrin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 337)

Abstract

The sympathetic nervous system is known to react to hypoxia, but the response is not unitary and is dependent on hypoxic features (severe or moderate hypoxia, acute or chronic exposure), on the sympathetic nerve or tissue considered and on the state of animals (conscious or anesthetized) (Lee et al. 1987; Fitzgerald et al. 1990). Moreover, the mechanisms controlling the response of the sympathetic nervous system remain poorly understood and seem also highly dependent on tissues and on hypoxic conditions. Two components may be possible candidates for this regulation: one related to neural pathways coming from carotid bodies, and the other related to local dopaminergic events. In fact, previous data report that stimulation of carotid chemoreceptors by hypoxia elicits, or not, a sympathetic response indicating the involvement, or not, of a carotid chemoreceptor reflex (Matsumoto et al. 1987a, 1987b; Fukuda et al. 1989; Biesold et al. 1990; Fitzgerald and Deghani, 1990). As to concern dopamine (DA), it is able to induce an inhibitory electrophysiological and biochemical response of the postganglionic noradrenergic neurones, both in vitro and in vivo (Libet and Owman, 1974; Hanbauer, 1976; Ip et al., 1983; Brokaw et al., 1987). The role of DA located in the SIF cells of sympathetic ganglia may be evoked in this control.

Keywords

Dioxide Dopamine Tyrosine Norepinephrine Epinephrine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biesold,D., Kurosawa, M., Saw, A., and Trzebski, A.,1990, Responses of sympathoadrenal medullary system to hypoxia and hypercapnia in anesthetized artificially ventilated rats, in “Chemoreceptors and chemoreceptor reflexes”, Acker, H., Trzebski, A., and O’Reagan, R.G., eds., Plenum Press, New York, 3:193.CrossRefGoogle Scholar
  2. Borghini, N., Dalmaz, Y., and Peyrin, L., 1991, The responsiveness of SIF cells in the rat superior cervical ganglion to prolonged hypoxia, J. Auton. Nerv. Syst., 33:150.CrossRefGoogle Scholar
  3. Bower, E. A., 1975, The influence of hypercapnia and hypoxia on the activity recorded from intestinal sympathetic nerves in the rabbit with cut sinus nerves, J. Physiol. (Lond.), 249:68P.Google Scholar
  4. Brokaw,J. J., and Hansen, J.T.,1987, Evidence that dopamine regulates norepinephrine synthesis in the rat superior cervical ganglion during hypoxic stress, J. Auton. Nerv. System., 18:185.CrossRefGoogle Scholar
  5. Dalmaz, Y., Borghini, N., Pequignot, J.M., and Peyrin, L., 1992, Presence of chemosensitive SIF cells in sympathetic ganglia: a biochemical, immunocytochemical and pharmacological study, in “ Neurobiology and cell physiology of chemoreception”, Data, P. G., Acker, H., and Lahiri, S., eds., Plenum Press, New York, (this book).Google Scholar
  6. Dalmaz,Y., Pequignot, J. M., Tavitian, E., Cottet-Emard, J. M.,andPeyrin, L.,1988, Longterm hypoxia increases the turnover of dopamine but not norepinephrine in rat sympathetic ganglia, J. Auton. Nerv. System., 24:57.CrossRefGoogle Scholar
  7. Favre, R., De Haut, M., Dalmaz, Y., Pequignot, J. M., and Peyrin, L., 1986, Peripheral distribution of free dopamine and its metabolites in the rat, J. Neural Trans., 66:13.CrossRefGoogle Scholar
  8. Fitzgerald,R., S., and Deghani, G. A., 1990, Chemoreceptor control of organ vascular resistance during acute systemic hypoxia, in “Chemoreceptors and chemoreceptor reflexes”, Acker, H., Trzebski, A., and O’Reagan, R.G., eds., Plenum Press, New York, 4:217.CrossRefGoogle Scholar
  9. Fukuda, Y., Sato, A., Suzuki, A., and Trzebski, A., 1989, Autonomic nerve and cardiovascular responses to changing blood oxygen and carbon dioxide levels in the rat, J. Auton. Nerv. Syst., 28:61PubMedCrossRefGoogle Scholar
  10. Hanbauer, I., 1976, Induction of tyrosine hydroxylase in the superior cervical ganglia of rats: Opposite influence of muscarinic and nicotinic receptor agonists, Neuropharmacology, 15:85.PubMedCrossRefGoogle Scholar
  11. Ip,N. Y., Perlman, R. L., and Zigmond, R. E.,1983, Acute transsynaptic regulation of tyrosine 3-monooxygenase activity in the rat superior cervical ganglion: Evidence for both cholinergic and noncholinergic mechanisms, Proc. Natl. Acad. Sci., 80:2081.PubMedCrossRefGoogle Scholar
  12. Lee, K., Miwa, S., Fujiwara, M., Magaribuchi, T., and Fujiwara, M., 1987, Differential effects of hypoxia on the turnover of norepinephrine and epinephrine in the heart, adrenal gland, submaxillary gland and stomach, J.Pharmacol. Exper. Ther., 240:954.Google Scholar
  13. Libet, B., and Owman, C., 1974, Concomitant changes in formaldehyde-induced fluorescence of dopamine intemeurons and in slow-inhibitory postsynaptic potentials of the rabbit superior cervical ganglion induced by stimulation of the preganglionic nerve or by muscarinic agent, J. Pysiol. (Lond.) . 327:635.Google Scholar
  14. Matsumoto, S., Mokashi, A., and Lahiri, S., 1987a, Cervical preganglionic sympathetic nerve activity and chemoreflexes in the cat, J. Appl. Physiol., 62: 1713.CrossRefGoogle Scholar
  15. Matsumoto, S., Mokashi, A., and Lahiri, S., 1987b, Ganglioglomerular nerves respond to moderate hypoxia independent of peripheral chemoreceptors in the cat, J.Auton. Nerv., 19:219.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Y. Dalmaz
    • 1
  • J. M. Pequignot
    • 1
  • J. M. Cottet-Emard
    • 1
  • A. Vouillarmet
    • 1
  • L. Peyrin
    • 1
  1. 1.Faculté de Medecine Grange-BlancheURA CNRS 1195LYON Cedex 08France

Personalised recommendations