Skip to main content

Comparison of Retinal-Based and Chlorophyll-Based Photosynthesis: A Biothermokinetic Description of Photochemical Reaction Centers

  • Chapter
Modern Trends in Biothermokinetics

Abstract

Life on earth depends on the transformation of sunlight (electromagnetic radiation) into biologically useful chemical energy. The first step in this process is the conversion of the free energy from sunlight into electrochemical ion gradients across biological membranes. Free energy derived from these, usually proton-but in some cases chloride-gradients, is subsequently stored in the form of the phosphorylation potential of ATP. In addition, free energy is stored in the form of redox potentials of coenzymes such as NAD(P)H.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Goldsworthy, Phycobilins, in: “Photoreceptor Evolution and Function,” M.G. Holmes, ed., Academic Press, London (1991).

    Google Scholar 

  2. K.J. Hellingwerf, “Structural and Functional Studies on Lipid Vesicles Containing Bacteriorhodopsin,” PhD Thesis, University of Amsterdam, Wm. Veenstra, Groningen (1979).

    Google Scholar 

  3. K.J. Hellingwerf, Reaction centers from Rhodopseudomonas sphaeroides in reconstituted phospholipid vesicles. II: Light-induced proton translocation, J. Bioenerg. Biomembr. 19:225 (1987).

    Article  PubMed  CAS  Google Scholar 

  4. D. Molenaar, W. Crielaard and K.J. Hellingwerf, Characterization of protonmotive force generation in lipo-somes reconstituted from phosphatidylethanolamine, reaction centers with light-harvesting complexes isolated from Rhodopseudomonas palustris, Biochemistry 27:2014 (1988).

    Article  CAS  Google Scholar 

  5. R. Henderson, J.M. Baldwin, T.A. Ceska, F. Zemlin, E. Beckmann and K.H. Downing, Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy, J.Mol. Biol. 213: 899 (1990).

    Article  PubMed  CAS  Google Scholar 

  6. J. Deisenhofer and H. Michel, The photosynthetic reaction center from the purple bacterium Rhodopseudo monas viridis, Science 245:1463 (1989).

    Article  PubMed  CAS  Google Scholar 

  7. G. Feher, J.P. Allen, M.Y. Okamura and D. Rees, Structure and function of bacterial photosynthetic reaction centres, Nature 339:111 (1989).

    Article  CAS  Google Scholar 

  8. G. Várö and J.K. Lanyi, Thermodynamics and energy coupling in the bacteriorhodopsin photocycle,Biochemistry 30:5016 (1991).

    Article  PubMed  Google Scholar 

  9. G. Schneider, R. Diller and M. Stockburger, Photochemical quantum yield of bacteriorhodopsin from resonance Raman scattering as a probe for photolysis, Chem. Phys. 131:17 (1989).

    Article  CAS  Google Scholar 

  10. A. Xie, Quantum efficiencies of bacteriorhodopsin photochemical reactions, Biophys. J. 58:1127 (1990).

    Article  PubMed  CAS  Google Scholar 

  11. C.E. Gibson and D.H. Jewson, The utilisation of light by microorganisms, in: “Aspects of Microbial Metabolism and Ecology,” G.A. Codd, ed., Academic Press, London (1984).

    Google Scholar 

  12. T. Noguchi, H. Hayashi and M. Tasumi, Factors controlling the efficiency of energy transfer from carotenoids to bacteriochlorophyll in purple bacteria, Biochim. Biophys. Acta 1017:280 (1990).

    Article  CAS  Google Scholar 

  13. H.V. Westerhoff and Zs. Dancsházy, Keeping a light-driven proton pump under control, Trends in Biochem.Sci. 9:112(1984).

    Article  CAS  Google Scholar 

  14. H.V. Westerhoff and K. van Dam, “Thermodynamics and Control of Free-Energy Transduction”, Elsevier,Amsterdam (1987).

    Google Scholar 

  15. H.V. Westerhoff, B.J. Scholte and K.J. Hellingwerf, Bacteriorhodopsin in liposomes. I. A description using irreversible thermodynamics, Biochim.Biophys.Acta 547:544 (1979).

    Article  PubMed  CAS  Google Scholar 

  16. H.V. Westerhoff, K.J. Hellingwerf, J.C. Arents, B.J. Scholte and K. van Dam, Mechanistic non-equilibrium thermodynamics describes biological energy transduction, Proc.Natl.Acad.Sci. USA 78: 3554 (1981).

    Article  PubMed  CAS  Google Scholar 

  17. K.J. Hellingwerf, L.J. Grootjans, A.J.M. Driessen, W. de Vrij and W.N. Konings, A functional comparison of proton motive force generating systems, Abstract for the 13th International Congress of Biochemistry, Amsterdam, FR-456 (1985).

    Google Scholar 

  18. P.W.M. van Dijck, K. Nicolay, J. Leunissen-Bijvelt, K. van Dam and R. Kaptein, 31P-Nuclear magnetic resonance and freeze fracture electron microscopic studies of reconstituted bacteriorhodopsin vesicles, Eur. J. Biochem. 117:639 (1981).

    PubMed  Google Scholar 

  19. W. Stoeckenius, R.H. Lozier and R.A. Bogomolni, Bacteriorhodopsin and the purple membrane of halo-bacteria, Biochim. Biophys. Acta 505:215 (1979).

    Article  PubMed  CAS  Google Scholar 

  20. K.J. Hellingwerf, B.J. Scholte and K. van Dam, Bacteriorhodopsin vesicles. An outline of the requirements of light-dependent H+ pumping, Biochim.Biophys.Acta 513:66 (1978).

    Article  PubMed  CAS  Google Scholar 

  21. B. Höjeberg, C. Lind and H.G. Khorana, Reconstitution of bacteriorhodopsin vesicles with Halobacterium halobium lipids. Effects of variations in lipid composition, J. Biol. Chem. 257:1690 (1982).

    PubMed  Google Scholar 

  22. R. Melhorn, B. Schobert, L. Packer and J.K. Lanyi, ESR studies of light-dependent volume changes in cell envelope vesicles from Halobacterium halobium, Biochim. Biophys. Acta 809:66 (1985).

    Article  Google Scholar 

  23. L.A. Drachev, A.D. Kaulen, V.P. Skulachev and V.V. Zorina, The mechanism of H+ transfer by bacteriorhodopsin, FEBS Lett. 226:139 (1987).

    Article  CAS  Google Scholar 

  24. K.J. Hellingwerf, J.J. Schuurmans and H.V. Westerhoff, Demonstration of coupling between the proton motive force across bacteriorhodopsin and the flow through its photochemical cycle, FEBS Lett. 92: 181 (1978).

    Article  PubMed  CAS  Google Scholar 

  25. Zs. Dancsházy, S.L. Helgerson and W. Stoeckenius, Coupling between the bacteriorhodopsin photocycle kinetics and the proton motive force, Photobiochem. and Photobiophys. 5:347 (1983).

    Google Scholar 

  26. E.J. Bylina, R. Jovine and D.C. Youvan, Quantitative analysis of genetically altered reaction centers using an in -vitro cytochrome oxidation assay, in: “The Photosynthetic Bacterial Reaction Center: Structure and Dynamics,” J. Breton and A. Vermeglio, eds, NATO ASI Series Vol. 149, Plenum Press, New York (1988).

    Google Scholar 

  27. D.G. Stavenga, J. Schwemer and K.J. Hellingwerf, Visual pigments, bacterial rhodopsins and related retinoid-binding proteins, in: “Photoreceptor evolution and function”, M.G. Holmes, ed., Academic Press, London (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hellingwerf, K.J., Crielaard, W., Westerhoff, H.V. (1993). Comparison of Retinal-Based and Chlorophyll-Based Photosynthesis: A Biothermokinetic Description of Photochemical Reaction Centers. In: Schuster, S., Rigoulet, M., Ouhabi, R., Mazat, JP. (eds) Modern Trends in Biothermokinetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2962-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2962-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6288-3

  • Online ISBN: 978-1-4615-2962-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics