Advertisement

Multiplicity of Control

  • Hans V. Westerhoff
  • Peter Ruhdal Jensen
  • Anton A. van der Gugten
  • Daniel Kahn
  • Boris N. Kholodenko
  • Stefan Schuster
  • Nienke Oldenburg
  • Karel van Dam
  • Wally C. van Heeswijk

Abstract

The living cell is controlled by a multitude of regulatory mechanisms. In addition to the difficulty of approaching the molecular processes of life, it is this sheer complexity that makes biology one of the most challenging topics for the physical chemist. We are attempting to deal with complexity by reducing it along the lines indicated by the organization of cell physiology itself. With respect to control analysis, this implies that we attempt to discern the parts of the cell that function as units in interactions with other such units in the cell. We have identified such units in covalent cascades of enzymes modifying one another, in the regulation of enzyme concentrations through gene expression, as well as in the processes generating and the processes consuming the proton gradient in oxidative phosphorylation.

Keywords

Oxidative Phosphorylation Glutamine Synthetase Elasticity Coefficient Mitochondrial Oxidative Phosphorylation Control Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.K. Groen, R. van der Meer, H.V. Westerhoff, RJ.A. Wanders, T.P.M. Akerboom and J.M. Tager, Control of metabolic fluxes, in: “Metabolic Compartmentation,” H. Sies, ed., pp. 9–37, Academic Press, New York (1982).Google Scholar
  2. 2.
    H. Kacser and J.A. Burns, The control of flux, Symp. Soc. Exp. Biol. 27:65–104 (1973).PubMedGoogle Scholar
  3. 3.
    H.V. Westerhoff, A.K. Groen and R.J.A. Wanders, The thermodynamic basis for the partial control of oxidative phosphorylation by the adenine-nucleotide translocator, Biochem. Soc. Trans. 11:90–91 (1983).Google Scholar
  4. 4.
    H.V. Westerhoff, P.J.A.M. Plomp, A.K. Groen and R.J.A. Wanders, Thermodynamics of the control of metabolism, Cell Biophys. 10:239–267 (1987a).Google Scholar
  5. 5.
    H.V. Westerhoff and K. van Dam, “Thermodynamics and Control of Biological Free Energy Transduction,” Elsevier, Amsterdam (1987).Google Scholar
  6. 6.
    H.V. Westerhoff, P.J.A.M. Plomp, A.K. Groen, R.J.A. Wanders, J.A. Bode and K. van Dam, On the origin of the limited control of mitochondrial respiration by the adenine nucleotide translocator, Arch. Biochem. Biophys. 257:154–169.Google Scholar
  7. 7.
    R.J.A. Wanders, A.K. Groen, C.W.T. van Roermund and J.M. Tager, Factors determining the relative contribution of the adenine-nucleotide translocator and the ADP-regenerating system to the control of oxidative phosphorylation in isolated rat-liver mitochondria, Eur. J. Biochem. 142:417–424 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    R.P. Hafher, G.C. Brown and M.D. Brand, Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the ‘top-down’ approach of metabolic control theory, Eur. J. Biocliem. 188:313–319 (1990).CrossRefGoogle Scholar
  9. 9.
    S. Schuster, D. Kahn and H.V. Westerhoff, A modular approach to the description of the control of connected metabolic systems, this volume.Google Scholar
  10. 10.
    C. Reder, Metabolic control theory: a structural approach, J. theor. Biol. 135:175–202 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    H.V. Westerhoff, J.G. Koster, M. van Workum and K.E. Rudd, On the control of gene expression, in:“Control of Metabolic Processes,” A. Cornish-Bowden and M.-L. Cardenas, eds., pp. 399–412, Plenum, New York (1990).Google Scholar
  12. 12.
    D. Kahn and H.V. Westerhoff, Control theory of regulatory cascades, J. theor. Biol. 53:255–285 (1991).CrossRefGoogle Scholar
  13. 13.
    A.A. van der Gugten and H.V. Westerhoff, Internal regulation. The C•E = I = E.C square-matrix method illustrated for a simple case of a complex pathway, this volume.Google Scholar
  14. W.C. van Heeswijk, H.V. Westerhoff and D. Kahn, Cascade control of ammonia assimilation, this volume.Google Scholar
  15. 15.
    R. Schuster and S. Schuster, Decomposition of biochemical reaction systems according to flux control insusceptibility, J. Chim. Phys. 89:1887–1910 (1992).Google Scholar
  16. 16.
    P.R. Jensen, N. Oldenburg, B. Petra, O. Michelsen and H.V. Westerhoff, Modulation of cellular energy state and DNA supercoiling, this volume.Google Scholar
  17. 17.
    B.N. Kholodenko and H.V. Westerhoff, Sum of the flux control coefficients: What is it equal to in different systems?, this volume.Google Scholar
  18. 18.
    H.V. Westerhoff, W. van Heeswijk, D. Kahn and D.B. Kell, Quantitative approaches to the analysis of the control and regulation of microbial metabolism, Anth. Leeuwenh. 60:193–208 (1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Hans V. Westerhoff
    • 1
    • 2
  • Peter Ruhdal Jensen
    • 1
  • Anton A. van der Gugten
    • 1
  • Daniel Kahn
    • 1
    • 3
  • Boris N. Kholodenko
    • 2
    • 4
  • Stefan Schuster
    • 5
  • Nienke Oldenburg
    • 1
  • Karel van Dam
    • 2
  • Wally C. van Heeswijk
    • 1
    • 2
  1. 1.Netherlands Cancer InstituteAmsterdamThe Netherlands
  2. 2.E.C. Slater InstituteUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Laboratoire de Biologie MoleculaireI.N.R.A-C.N.R.S.Castanet-TolosanFrance
  4. 4.A.N. Belozersky Institute of Physico-Chemical BiologyMoscow State UniversityMoscowRussia
  5. 5.Dépt. de Biochimie MedicaleUniversite Bordeaux IIBordeauxFrance

Personalised recommendations