Advertisement

Regulation of Energy Flux of Yeast during Steady State and Oscillatory Growth

  • Regine Ölz
  • Katrin Larsson
  • Christer Larsson
  • Erich Gnaiger
  • Lena Gustafsson

Abstract

Baker’s and brewer’s yeast Saccharomyces cerevisiae is a microorganism of major industrial importance, both within traditional and new branches of industry. For effective control of biotechnological yeast processes, an improved understanding of metabolic regulation in yeast is necessary in combination with development of effective control variables.

Keywords

Gibbs Energy Dilution Rate Continuous Culture Steady State Growth Gibbs Energy Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.T. Kuenzi and A.Fiechter, Change in carbohydrate composition and trehalase activity during the budding cycle of Saccharomyces cerevisiae, Arch. Microbiol. 64:396–407 (1969).Google Scholar
  2. 2.
    H.K. von Meyenburg, Stable synchrony oscillations in continuous cultures of S. cerevisiae under glucose limitation, in: “Biological and Biochemical Oscillators,” B. Chance, E.K. Pye, T.K. Ghosh and B. Hess, eds, Academic Press, New York (1973), p. 411–417.Google Scholar
  3. 3.
    C.-I. Chen, K.A. McDonald and L.Bisson, Oscillatory behaviour of Saccharomyces cerevisiae in continuous culture: I. Effects of pH and nitrogen levels, Biotech. Bioeng. 36:19–27 (1990).CrossRefGoogle Scholar
  4. 4.
    C.-I. Chen and K.A. McDonald, Oscillatory behaviour of Saccharomyces cerevisiae in continuous culture:II. Analysis of cell synchronization and metabolism, Biotech. Bioeng. 36:28–38 (1990).CrossRefGoogle Scholar
  5. 5.
    R. Grosz and G. Stephanopoulos, Physiological, biochemical, and mathematical studies of micro-aerobic continuous ethanol fermentation by Saccharomyces cerevisiae. I: Hysteresis, oscillations and maximum specific ethanol productivities in chemostat culture, Biotech. Bioeng. 36:1006–1019 (1990).CrossRefGoogle Scholar
  6. 6.
    E. Martegani, D. Porro, B.M. Ranzi and L.Alberghina, Involvement of a cell size control mechanism in the induction and maintenance of oscillations in continuous cultures of budding yeast, Biotech. Bioeng. 36:453–459 (1990).CrossRefGoogle Scholar
  7. 7.
    L. Gustafsson, Microbiological calorimetry, Thermochim. Acta 193:145–171 (1991).CrossRefGoogle Scholar
  8. 8.
    J.C. Anand and A.D. Brown , Growth rate patterns of the so-called osmophilic and non-osmophilic yeasts in solutions of polyethylene glycol, J. Gen. Microbiol. 52:205–212 (1968).CrossRefGoogle Scholar
  9. 9.
    R. Ölz, K. Larsson, L. Adler and L. Gustafsson, Energy flux and osmoregulation of Saccharomyces cerevisiae grown in chemostats under NaCl stress, J. Bacteriol. ,in press.Google Scholar
  10. 10.
    A. Blomberg and L. Adler, Physiology of osmotolerance in fungi, Adv. Microbial Physiol. 33:145–212 (1992).CrossRefGoogle Scholar
  11. 11.
    J.A. Roels. “Energetics and Kinetics in Biotechnology,” Elsevier, Amsterdam (1983).Google Scholar
  12. 12.
    A. Blomberg, C. Larsson and L.Gustafsson, Microcalorimetric monitoring of growth of Saccharomyces cerevisiae: Osmotolerance in relation to physiological state, J. Bacteriol. 170:4562–4568 (1988).PubMedGoogle Scholar
  13. 13.
    E. Gnaiger, Concepts on efficiency in biological calorimetry and metabolic flux control, Thermochim. Acta 172:31–52 (1990).CrossRefGoogle Scholar
  14. 14.
    O. Kedem and S.R. Caplan, Degree of coupling and its relation to efficiency in energy conversion, Trans. Faraday Soc. 61:1897–1911 (1965).CrossRefGoogle Scholar
  15. 15.
    H. Westerhoff and K.van Dam. “Thermodynamics and Control of Biological Free-Energy Transduction,”Elsevier, Amsterdam (1987).Google Scholar
  16. 16.
    U. von Stockar, Ch. Larsson and I.W. Marison, Calorimetry and energetic efficiencies in aerobic and anaerobic microbial growth, Pure Appl. Chem. ,in press.Google Scholar
  17. 17.
    M. Rutgers, H.M.L. van der Gulden and K. van Dam, Thermodynainic efficiency of bac-terial growth calculated from growth yield of Pseudomonas oxalaticus 0X1 in the chemostat, Biochim. Biophys. Acta 973:302–307 (1989).PubMedCrossRefGoogle Scholar
  18. 18.
    E. Gnaiger, Optimum efficiencies of energy transformation in anoxic metabolism. The strategies of power and economy, in: “Evolutionary Physiological Ecology,” P. Calow, ed., Cambridge Univ. Press, London (1987), pp. 7–36.Google Scholar
  19. 19.
    D.G. Fraenkel, Carbohydrate metabolism, in: “The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression,” N.J. Strathern, E.W. Jones and J.R. Broad, eds, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1982), pp. 1–37.Google Scholar
  20. 20.
    C. Wills, T. Martin and T. Melham, Effect on gluconeogenesis of mutants blocking two mitochondrial transport systems in the yeast Saccharomyces cerevisiae, Arch. Biochem. Biophys. 246:306–320 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Regine Ölz
    • 1
  • Katrin Larsson
    • 1
  • Christer Larsson
    • 1
  • Erich Gnaiger
    • 2
  • Lena Gustafsson
    • 1
  1. 1.Department of General and Marine MicrobiologyUniversity of GöteborgGöteborgSweden
  2. 2.Department of Transplant Surgery, Research DivisionUniversity Hospital of InnsbruckInnsbruckAustria

Personalised recommendations