Advertisement

Co-Induction of Tetrahydrobiopterin (BH4) Levels and Tyrosine Hydroxylase Activity in Cultured PC12 Cells

  • Panagiotis Z. Anastasiadis
  • J. Christopher States
  • Donald M. Kuhn
  • Robert A. Levine
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 338)

Abstract

BH4 is the cofactor for Phenylalanine hydroxylase, as well as tyrosine and tryptophan hydroxylases, which are the rate-limiting enzymes in catecholamine (CA) and Serotonin synthesis, respectively. CTP cyclohydrolase (CTP-CH) and sepiapterin reductase (SR) catalyze the initial and final steps in BH4 biosynthesis, respectively. Because no intermediates are detected, CTP-CH is thought to be the rate-limiting enzyme in nonprimate BH4 biosynthesis. In humans, the existence of neopterin in fluids suggests that other enzymes following CTP-CH may also play a regulatory role in BH4 biosynthesis.

Keywords

PC12 Cell Nerve Growth Factor Tyrosine Hydroxylase Vasoactive Intestinal Peptide Phenylalanine Hydroxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Abou-Donia, M.M., Wilson, S.P., Zimmerman, T.P., Nichol,C.A., and Viveros, O.H.: J. Neurochem., 46: 1190–1199, 1986.PubMedCrossRefGoogle Scholar
  2. 2).
    Baruchin, A., Weisberg, E.P., Miner, L.L., Ennis, D,Nisenbaum, L.K., Naylor, E., Stricker, E.M., Zigmond,M.J., and Kaplan, B.B.: J. Neurochem., 54: 1769–1775, 1990.PubMedCrossRefGoogle Scholar
  3. 3).
    Greene LA and Tischler A.S.: Proc. Natl. Acad. Sci. USA,73: 2424–2428,1976.PubMedCrossRefGoogle Scholar
  4. 4).
    Brautigam, M., Dreesen, R., and Herken, H.:Journal on Neurochemistry, 42: 390–396,1984.CrossRefGoogle Scholar
  5. 5).
    Wessels-Reiker, M., Haycock, J.W., Howlett, A.C., andStrong, R.: The Journal of Biological Chemistry, 266: 9347–9350,1991.PubMedGoogle Scholar
  6. 6).
    Suzuki H, Nakanishi N, YamadaS: Biochem. Biophys. Res.Comm., 153: 382–387, 1988.PubMedCrossRefGoogle Scholar
  7. 7).
    Levine, R.A., Pollard, H.B., and Kuhn, D.M.: Anal.Biochem., 143: 205–208,1984.PubMedCrossRefGoogle Scholar
  8. 8).
    Blau, N. and Niederwieser, A.: Anal. Biochem. 128:446–452,1982.CrossRefGoogle Scholar
  9. 9).
    Levine, RA, Zoephel, G.P., Niederwieser, A., andCurtius, H.C.: J. Pharmacol. Exp. Ther., 242: 514–522, 1987.PubMedGoogle Scholar
  10. 10).
    Levine, RA, Kapatos, G., Kaufman, S., andMilstien, S.: J. Neurochem., 54:1218–1224,1990.PubMedCrossRefGoogle Scholar
  11. 11).
    Bradford M.M.: Analyt. Biochem. 72, 248–254,1976.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Panagiotis Z. Anastasiadis
    • 1
    • 2
  • J. Christopher States
    • 3
  • Donald M. Kuhn
    • 2
  • Robert A. Levine
    • 1
    • 2
    • 4
  1. 1.William T. Gossett Neurology LabsHenry Ford HospitalDetroitUSA
  2. 2.Cellular and Clinical Neurobiology Program, Department of PsychiatryWayne State UniversityDetroitUSA
  3. 3.Center for Molecular BiologyWayne State UniversityUSA
  4. 4.Veterans Administration Medical CenterAllen ParkUSA

Personalised recommendations