Algebraic Treatment of Collective Excitations in Baryon Spectroscopy

  • R. Bijker
  • A. Leviatan

Abstract

Algebraic methods have been used extensively in hadronic physics for the description of the internal degrees of freedom (flavor-spin-color) [1]. Spectrum generating algebras and dynamic symmetries have been very instrumental in the classification of hadronic states and the construction of mass formulas, such as the Gell-Mann-Okubo mass formula [2].

Keywords

Kelly Stpp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    See e.g. M. Gell-Mann and Y. Ne’eman, ‘The eightfold way’, W.A. Benjamin (1964).Google Scholar
  2. [2]
    S. Okubo, Progr. Theor. Phys. 27, 949 (1962).ADSMATHCrossRefGoogle Scholar
  3. [3]
    F. Iachello, Nucl. Phys. A497, 23c (1989);ADSGoogle Scholar
  4. F. Iachello, Nucl. Phys. A518, 173 (1990);ADSGoogle Scholar
  5. F. Iachello, Proc. of the ‘4th workshop on perspectives in nuclear physics at intermediate energies’, S. Boffi, C. Ciofi degli Atti and M. Giannini, eds., World Scientific, Singapore (1989), page 17.Google Scholar
  6. [4]
    F. Iachello and D. Kusnezov, Phys. Lett. 255B, 493 (1991);ADSGoogle Scholar
  7. F. Iachello and D. Kusnezov, Phys. Rev. D45, 4156 (1992).ADSGoogle Scholar
  8. [5]
    F. Iachello, N.C. Mukhopadhyay and L. Zhang, Phys. Lett. 256B, 295 (1991);MathSciNetADSGoogle Scholar
  9. F. Iachello, N.C. Mukhopadhyay and L. Zhang, Phys. Rev. D44, 898 (1991).ADSGoogle Scholar
  10. [6]
    N. Isgur and G. Karl, Phys. Rev. 18, 4187 (1978);ADSGoogle Scholar
  11. N. Isgur and G. Karl, Phys. Rev. D19, 2653 (1979);ADSGoogle Scholar
  12. N. Isgur and G. Karl, Phys. Rev. D20, 1191 (1979);ADSGoogle Scholar
  13. K.-T. Chao, N. Isgur and G. Karl, Phys. Rev. D23, 155 (1981).ADSGoogle Scholar
  14. [7]
    S. Capstick and N. Isgur, Phys. Rev. D34, 2809 (1986).ADSGoogle Scholar
  15. [8]
    R. Bijker, A.E.L. Dieperink and A. Leviatan, these proceedings.Google Scholar
  16. [9]
    M. Moshinsky, in ‘The Harmonic Oscillator in Modern Physics: From. Atoms to Quarks’, Gordon and Breach, 1969 and references therein.Google Scholar
  17. [10]
    A. Arima and F. Iachello, Phys. Rev. Lett. 35, 1069 (1975);ADSCrossRefGoogle Scholar
  18. F. Iachello and A. Arima, ‘The Interacting Boson Model’ (Cambridge Univ. Press, Cambridge, 1987).CrossRefGoogle Scholar
  19. [11]
    F. Iachello, Chem. Phys. Lett. 78, 581 (1981).MathSciNetADSCrossRefGoogle Scholar
  20. [12]
    K.C. Bowler, P.J. Corvi, A.J.G. Hey, P.D. Jarvis and R.C. King, Phys. Rev. D24, 197 (1981);MathSciNetADSGoogle Scholar
  21. A.J.G. Hey and R.L. Kelly, Phys. Rep. 96, 71 (1983).ADSCrossRefGoogle Scholar
  22. [13]
    R. Gilmore and D.H. Feng, Nucl. Phys. A301, 189 (1978).MathSciNetADSGoogle Scholar
  23. [14]
    A. Leviatan and M.W. Kirson, Ann. Phys. 188, 142 (1988);MathSciNetADSCrossRefGoogle Scholar
  24. A. Leviatan, J. Chem. Phys. 91, 1706 (1989).ADSCrossRefGoogle Scholar
  25. [15]
    G. Herzberg, ‘Molecular Spectra and Molecular Structure II: Infrared and Raman Spectra of Polyatomic Molecules’ (Van Nostrand Rheinhold, Princeton, NJ 1945).Google Scholar
  26. [16]
    Particle Data Group, Phys. Rev. D45, S1 (1992).ADSGoogle Scholar
  27. [17]
    F. Giirsey and L.A. Radicati, Phys. Rev. Lett. 13, 173 (1964).MathSciNetADSCrossRefGoogle Scholar
  28. [18]
    R. Koniuk and N. Isgur, Phys. Rev. D21, 1868 (1980).ADSGoogle Scholar
  29. [19]
    Z. Li, Phys. Rev. D44, 2841 (1991);ADSGoogle Scholar
  30. Z. Li, V. Burkert and Z. Li, Phys. Rev. D46, 70 (1992).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • R. Bijker
    • 1
  • A. Leviatan
    • 2
  1. 1.R.J. Van de Graaff LaboratoryUniversity of UtrechtUtrechtThe Netherlands
  2. 2.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael

Personalised recommendations