Algebraic Approach to Vibrational Excitations in an Anharmonic Linear Chain

  • R. Lemus
  • A. Frank

Abstract

A description of vibrational excitations in one-dimensional monoatomic and diatomic Bravais lattices is presented by means of an algebraic model of n-coupled anharmonic oscillators. The anharmonic interaction corresponds to a Morse-like potential. The energy expression E(k) for one-phonon excitations is obtained analytically in both cases. In addition, we present numerical results for two-phonons.

Keywords

Benzene Maki 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Iachello, Chem. Phys. Left. 78:581 (1981)MathSciNetADSCrossRefGoogle Scholar
  2. F. Iachello and R.D. Levine, J. Chem. Phys. 77:576 (1982)MathSciNetCrossRefGoogle Scholar
  3. O.S. van Roosmalen, A.E.L. Dieperink and F. Iachello, Chem. Phys. Lett. 85:32 (1982).ADSCrossRefGoogle Scholar
  4. 2.
    O.S. van Roosmalen, F. Iachello, R.D. Levine and A.E.L. Dieperink, J. Chem. Phys. 79:2515 (1983)MathSciNetADSCrossRefGoogle Scholar
  5. J. Homos and F. Iachello, J. Chhem. Phys. 90:5284 (1989)ADSCrossRefGoogle Scholar
  6. F. Iachello, S. Oss and R. Lemus, J. Mol. Spectrosc. 146:156 (1991)CrossRefGoogle Scholar
  7. Ibidem, 149:132 (1991).Google Scholar
  8. 3.
    F. Iachello and S. Oss, J. Mol. Spectrose. 142:85 (1990).ADSCrossRefGoogle Scholar
  9. 4.
    A. Frank, F. Iachello and R. Lemus, Chem. Phys. Lett. 131:380 (1986)ADSCrossRefGoogle Scholar
  10. A. Frank, R. Lemus and F. Iachello, J. Chem. Phys. 91:29 (1989)ADSCrossRefGoogle Scholar
  11. R. Lemus and A. Frank, Ann. of Phys. 206:122 (1991)MathSciNetADSCrossRefGoogle Scholar
  12. A. Frank, R. Lemus and F. Iachello, “Algebraic Model for Molecular Electronic Spectra”, Symmetries in Science V, Edited by B. Gruber et al. Plenum Press, NY. 1991Google Scholar
  13. R. Lemus, A. Leviatan and A. Frank, Chem. Phys. Lett. 194:327 (1992)ADSCrossRefGoogle Scholar
  14. R. Lemus and A. Frank, J. Chem. Phys. “Constrained Calculations in the Electron-Vibron Model and the Born-Oppenheimer Approximation”, J. Chem. Phys., in press.Google Scholar
  15. 5.
    S. Levit and V. Smilansky, Nuclear Physics A389:56 (1982).ADSGoogle Scholar
  16. 6.
    M. Berrondo and A. Palma, J. Phys. A: Math. Gen. 13:773 (1980)MathSciNetADSCrossRefGoogle Scholar
  17. Y. Alhassid, F. Gürsey and F. Iachello, Ann. of Phys. 148:346 (1983).ADSMATHCrossRefGoogle Scholar
  18. 7.
    C.E. Wulfman and R.D. Levine, Chem. Phys. Lett. 97:361 (1983).MathSciNetADSCrossRefGoogle Scholar
  19. 8.
    O.S. van Roosmalen, I. Benjamin and R.D. Levine, J. Chem. Phys. 81:5986 (1984).ADSCrossRefGoogle Scholar
  20. 9.
    F. Iachello and S. Oss, Phys. Rev. Lett. 66:2976 (1991);ADSCrossRefGoogle Scholar
  21. F. Iachello and S. Oss, Cheng. Phys. Lett. 187:500 (1991).ADSCrossRefGoogle Scholar
  22. 10.
    A. Frank and R. Lemus, Phys. Rev. Lett. 68:413 (1992).ADSCrossRefGoogle Scholar
  23. 11.
    S.L. Altmann, “Induced Representations in Crystals and Molecules Point, Space and Nonrigid Molecule Groups”, Academic Press, 1977.Google Scholar
  24. 12.
    R. Lemus and A. Frank, “Algebraic Description of a Linear Chain of n-coupled Anharmonic Oscillators”, to be published.Google Scholar
  25. 13.
    A.S. Davidov, Solid State Theory. Mir. Moscow. 1981;Google Scholar
  26. Neil W. Ashcroft and N. David Mermin, Solid State Physics. Rolt-Saunders International Editions 1976.Google Scholar
  27. 14.
    R. Bruinsma, K. Maki and J. Wheatley, Phys. Rev. Lett. 57:1773 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • R. Lemus
    • 1
  • A. Frank
    • 2
  1. 1.Instituto de Ciencias NuclearesUNAMMéxico
  2. 2.Departamento de Física Atómica, Molecular y Nuclear Facultad de FísicaUniversidad de SevillaSevillaEspaña

Personalised recommendations