Femtosecond Probing of Photoinduced Refractive Index Changes in Semiconductors

  • E. C. Fox
  • H. M. van Driel
Part of the NATO ASI Series book series (NSSB, volume 314)


For decades, Information technology has been dominated by electronics. Increasingly, however, the physical limitations of electronics are being or have been reached and scientists are exploring new technologies for transmitting, storing and processing information. Many believe that light or photons will form the new “current” for information in the next century and that photonics could possibly supplant electronics in several devices. Certainly photonics is now making significant inroads in areas such as transmission and storage. However, the same can’t be said of routing and switching, since such functions are still carried out using all electronic or hybrid, opto-electronic technologies. Increasing demands for integration call for all-optical switching devices and it has become the “holy grail” of the emerging optical communication technologies to find suitable materials which display a large enough and fast enough optical response to be considered for such devices. The underlying physical mechanism which is being researched in many of these quests is photo-induced refractive index changes [Shen, 1984; Gibbs,1985]. It is envisioned that a gate optical pulse can be used to alter the local refractive index in a device and thus modify the direction of propagation, phase, or transmission of an optical pulse passing through the device in what is commonly referred to as light-by-light switching. Many different types of materials have been and continue to be investigated for these applications including semiconductors, glasses, semiconductor-doped glasses, and polymers [Miller, 1981; Stegeman, 1985; Haug, 1988; Gibbs, 1990]. Also, several different geometries have been researched for switching applications based on Fabry-Perot interferometers, etalons, waveguides, diffraction, and scattering [Stegeman, 1985].


Carrier Density Pump Pulse Probe Pulse Diffraction Efficiency Refractive Index Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auston, D.H., McAfee, S., Shank, C.V., Ippen, E.P., Teschke, O., 1978, Picosecond spectroscopy of semiconductors, Solid State Electron. 21:147.CrossRefGoogle Scholar
  2. Anderson, K.K., Lagasse, M.J., Wang, CA, Fujimoto, J.G., Haus, H.A., 1990, Femtosecond dynamics of the nonlinear index near the band edge in AIGaAs waveguides, Appl. Phys. Lett. 56:1834.CrossRefGoogle Scholar
  3. Chandresekhar, S., 1950, “Radiative Transfer,” Dover, New York.Google Scholar
  4. Combescot, M., 1979, Hydrodynamics of an electron-hole plasma created by a pulse, Solid State Commun. 30:81.CrossRefGoogle Scholar
  5. Cornet, A., Pugnet, M., Collet, J., Amand, T, Brousseau, M., 1981, Spatial expansion of hot electron-hole plasma at high density in CdSe, J. de Phys. C7:471.Google Scholar
  6. Cotter, D., Ironside, C.N., Ainslie, B.J., Girdlestone, H.P., 1989, Picosecond pump-probe interferometric measurement of optical nonlinearity in semiconductor-doped fibers, Opt. Lett. 14:317.CrossRefGoogle Scholar
  7. Ding, Y.J., Guo, C.L. Swartzlander, G.A., Jr., Khurghin, J.B., Kaplan, A.E., 1990, Spectral measurement of the nonlinear refractive index in ZnSe using self-bending of a pulsed laser beam, Opt. Lett. 15:1431.CrossRefGoogle Scholar
  8. Dneprovskii, V.S., Klimov, V.I., Novikov, M.G., 1988, Recombination dynamics of an electron-hole plasma in cadmium sulfide, Sov. Phys. Solid State 30:1694.Google Scholar
  9. Dneprovskii, V.S., Efros, A.L., Ekimov, AI., Klimov, V.I., Kudriaystev, I.A., Novikov, M.G., 1990, Spontaneous and stimulated collapse of high density electron-hole system in CdSe, Solid State Commun. 74:555.CrossRefGoogle Scholar
  10. Downer, M.C. and Shank, C.V., 1986, Ultrafast beating of silicon sapphire by femtosecond optical pulses, Phys. Rev. Lett. 56:761.CrossRefGoogle Scholar
  11. Dubard, J., Oudar, J.L., Alexandre, F., Hulin, D., Orszag, A., 1987, Ultrafast absorption recovery due to stimulated emission in GaAs/A1GaAs Multiple quantum wells, Appl. Phys. Lett. 50:821.CrossRefGoogle Scholar
  12. Dumke, W.P., 1957, Spontaneous radiative recombination in semiconductors, Phys. Rev. 105:139.CrossRefGoogle Scholar
  13. Eichler, H.J., Gunter, P., Pohl, E.W., 1986, “Laser Induced Dynamic Gratings,” Springer-Verlag.Google Scholar
  14. Epifanov, M.S., Galkin, G.N., Bobrova, E.A., Vavilov, V.S., Sabanova, L.D., 1976, Photon transfer of excitation of nonequilibrium carriers in gallium arsenide, Fiz. & Tekh. Poluprovodn. 10:889 (Soy. Phys. Semicond. 10:526).Google Scholar
  15. Fork, R. L., Greene, B.I., Shank, C.V., 1981, Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking, Appl. Phys. Lett. 38:671.CrossRefGoogle Scholar
  16. Fox, A. M., Manning, R.J., Miller, A., 1989, Picosecond relaxation mechanisms in highly excited GalnAsP, J. Appl. Phys. 65:4287.CrossRefGoogle Scholar
  17. Fox, E.C., Canto-Said, E.J., van Driel, H.M., 1991, Femtosecond time-resolved refractive index changes in СdS0.75Se0.25 and CdS, Appl. Phys. Lett. 59:1878.CrossRefGoogle Scholar
  18. Fox, E.C., Canto-Said, E.J., van Driel, H.M., 1992a, Separation of bound and free carrier contributions to the refractive index change induced in II-Vi semiconductors by femtosecond pulses, Semicond. Sci. Technol. 7 В183.CrossRefGoogle Scholar
  19. Fox, E.C., Canto-Said, E.J., van Driel, H.M., 1992b, Femtosecond time-resolved refractive index changes in CdSSe, SPIE meeting on “Ultrafast Phenomena in Semiconductors and Superconductors,” Sommerset, N.J., U.S.A.Google Scholar
  20. Fox, E.C. and van Driel, H.M., 1992c, Ultrafast carrier recombination and plasma expansion via stimulated emission in II-VI semiconductors, Phys. Rev. В,in press.Google Scholar
  21. Friberg, S.W. and Smith, P.W., 1987, Nonlinear optical glasses for ultrafast optical switches, I.E.E.E. J. Quantum Electron, QE-23:2089.CrossRefGoogle Scholar
  22. Gibbs, H.M., 1985, “Optical Bistability: Controlling Light with Light,” Academic Press, New York.Google Scholar
  23. Gibbs, H.M., Khitrova, G., Peyghambarian, N., 1990, “Nonlinear Photonics,” Springer Verlag, Berlin.CrossRefGoogle Scholar
  24. Goebel, E.O., Hildebrand, O., Lohnert, K., 1977, Wavelength dependence of gain saturation in GaAs lasers, I.E.E.E. J. Quantum Electron. QE-13:848.CrossRefGoogle Scholar
  25. Haug, H., 1988, “Optical Nonlinearities and Instabilities in Semiconductors,” Academic Press, San Diego.Google Scholar
  26. Johnson, E.J., 1967, in “Semiconductors and Semimetals,” vol. 3, ed. Willardson, R.K. and Beer, A.C., Academic Press, London.Google Scholar
  27. Junnarkar, M.R. and Alfano, R.R., 1986, Photogenerated high-density electron-hole plasma energy relaxation and experimental evidence for rapid expansion of the electron-hole plasma in CdSe, Phys. Rev. В 34:7045.Google Scholar
  28. Kalafati, Y. D. and Kokin, V.A., 1991, Picosecond relaxation processes in a semiconductor laser excited by a powerful ultrashort light pulse, Soy. Phys. J.E.T.P. 72:1003.Google Scholar
  29. Kobayashi, A., Sankey, O.F., Volz, S.M., Dow, J.M., 1983, Semiempirical tight-binding band structures of wurtzite semiconductors: AIN, CdS, CdSe, ZnS, and ZnO, Phys. Rev. В 28:935.Google Scholar
  30. Kocevar, P., 1985, Hot phonon dynamics, Physica 134 B+?:155.Google Scholar
  31. Kressel, H. and Butler, J.K., 1977, “Semiconductor Lasers and Heterojunctions,” Academic Press, New York.Google Scholar
  32. LaGasse, M.J., Anderson, K.K., Haus, H.A., Fujimoto, J.G., 1989, Femtosecond all-optical switching in AlGaAs waveguides using a time division interferometer, Appl. Phys. Lett. 54:2068.CrossRefGoogle Scholar
  33. Landot and Börnstein, 1982, “Numerical Data and Functional Relationships in Science and Technology, New Series,” vol. 17 & 22, springer-Veriag.Google Scholar
  34. Majumder, F.A., Swoboda, H.-E., Kempf, K, Klingshirn, C., 1985, Electron-hole plasma expansion in the direct-band-gap semiconductors CdS and CdSe, Phys. Rev. В 32:2407.Google Scholar
  35. Miller, A., Miller, D.A.B., Smith, S. D., 1981, Dynamic non-linear optical processes in semiconductors, Adv. in Physics 30:697.CrossRefGoogle Scholar
  36. Pötz, W. and Kocevar, P., 1983, Cooling of highly photoexcited electron-hole plasma in polar semiconductors and semiconductor quantum wells: a balance-equation approach, Phys. Rev. В 82:7040.Google Scholar
  37. Puls, J., Rudolph, W., Henneberger, F., Lap, D., 1988, Femtosecond studies of room temperature optical nonlinearities in wide-gap II-VI semiconductors, Phys. Stat. Sol. (b) 150:419.CrossRefGoogle Scholar
  38. Pugnet, M., Collet, J., Cornet, A., 1981, Cooling of hot electron-hole plasmas in the presence screened electron-phonon interactions, Solid State Commun. 38:531.CrossRefGoogle Scholar
  39. Rinker, M., Swoboda, H.-E, Majumder, F.A., Khngshirn, C., 1989, Diffusive and thermal properities of the electron-hole plasma in CdS and CdSe, Solid State Commas. 69:887.CrossRefGoogle Scholar
  40. Rolland, C. and Corkum, P.B., 1986, Amplification of 70 fs pulses in a high repetition rate XeCI pumped dye laser amplifier, Opt. Commas,59:64.CrossRefGoogle Scholar
  41. Rudolph, W., Puls, J., Henneberger, F., Lap, D., 1990, Femtosecond studies of transient nonlinearites in wide-gap II-VI semiconductor compounds, Phys. Stat. Sol. (b) 159:49.CrossRefGoogle Scholar
  42. Said, A.A., Sheik-Bahae, M., Hagan, D.J., Wei, T.H., Wang, J., Young, J, Van Stryland, E.W., 1992, Determination of bound and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZuTe, J. Opt. Soc. Am. В 9:405.CrossRefGoogle Scholar
  43. Saito, H. and Göbel, E.O., 1985, Picosecond spectroscopy of highly excited Cds, Phys. Rev. B 31:2360.CrossRefGoogle Scholar
  44. Seeger, K., 1982, “Semiconductor Physics, an Introduction,” Springer Verlag, Berlin.Google Scholar
  45. Shah, J., 1989, Photoexcited hot carriers: from CW to 6 fs in 20 years, Solid State Electron. 32:1051.CrossRefGoogle Scholar
  46. Shank, C.V., Aaston, D.H, Ippen, E.P., Teschke, O., 1978, Picosecond time resolved reflectivity of direct gap semiconductors, Solid State Commun. 26:567.CrossRefGoogle Scholar
  47. Sheik-Bahae, M., Said, A.A., Van Stryland, E.W., 1989, High-sensitivity, single-beam n2 measurements, Opt. Lett, 14:955.CrossRefGoogle Scholar
  48. Sheik-bahae, M., Hutchings, D.C., Hagan, D.J., Van Stryland, E.W., 1991, Dispersion of bound electronic nonlinear refraction in solids, I.E.E.E. J. Quantum Electron. QE-27:1296.CrossRefGoogle Scholar
  49. Shen, Y.R., 1984, “Principles of Nonlinear Optics,” John Wiley & Sons, Toronto.Google Scholar
  50. Solymar, L. and Cooke, DJ., 1981, “Volume Holography and Volume Gratings,” Academic Press, New York.Google Scholar
  51. Stegeman, G.I. and Stolen, R.H., 1988, “Nonlinear Guided Wave Phenomena,” special issue of J. Opt. Soc. Am. B 5:264–574.CrossRefGoogle Scholar
  52. Tsarenkov, G.V., 1979, Drift of recombination in a variable gap semiconductor, Soy. Phys. Semicond,13:641.Google Scholar
  53. Valdmanis, J.A., Fork, R.L., Gordon, J.P., 1985, Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation group velocity dispersion, saturable absorption, and saturable gain, Opt. Lett. 10:131.CrossRefGoogle Scholar
  54. van Dricl, H.M., 1979, Influence of hot phonons on energy relaxation of high-density carriers in germanium, Phys. Rev. В 19:5928.Google Scholar
  55. van Driel, H.M., 1987, kinetics of high-density plasma generated in Si by 1.06- and 0.53-mm picosecond laser pulses, Phys. Rev. В 35:8166.Google Scholar
  56. van Lap, D., Peschel, U., Ponath, H.E., Rudolph, W., 1991, Investigation of carrier temperature relaxation with femtosecond transient grating experiments in CdSxSe1-x semiconductors, Inst. Phys. Conf. Ser. No. 126: Section V, 357, presented at Int. Symp. on Ultrafast Processes in Spectroscopy, Bayreuth.Google Scholar
  57. Van Strylaпd, E.W., Vanherzecle, H., Woodall, M.A., Soileau, M.J., Smirl, A.L., Guha, S., Boggess, T.F., 1985, Two photon absorption, nonlinear refraction, and optical limiting in semiconductors, Opt. Eng. 24:613.Google Scholar
  58. Vasconcellos, A. and Luzzi, R., 1980, Coupled electron-hole plasma-phonon system in far-from-equilibrium semiconductors, Phys. Rev, B. 22:6355.CrossRefGoogle Scholar
  59. Wherrett, B.S., 1988, Nonlinear Refraction for CW Optical Bistability in “Optical Nonlinearities and Instabilities in Semiconductors,” ed. Haug, H., Academic Press, San Diego.Google Scholar
  60. Wherrett, B.S., Darzi, A.K., Chow, Y.T., McGuckin, A.T., Van Stryland, E.W., 1990, Ultrafast thermal refractive nonlinearities in bistable interference filters, J. Opt. Soc. B 7:215.CrossRefGoogle Scholar
  61. Zimmermann, R., 1988, Nonlinear optics and the Mott transition in semiconductors, Phys. Stat. Sol. (b) 146:371.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • E. C. Fox
    • 1
  • H. M. van Driel
    • 1
  1. 1.Department of PhysicsUniversity of TorontoTorontoCanada

Personalised recommendations