Chemotactic and Inflammatory Cytokines — CXC and CC Proteins

  • Marco Baggiolini
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 351)


This is the third meeting in about three years on a family of cytokines that became fancy with the discovery of interleukin-8 (IL-8). The IL-8-related cytokines are small, and relatively easy to work with. They are characterized by four conserved cysteine residues. Alignment of these residues differentiates two subfamilies: one with the first two cysteines separated by one amino acid (CXC cytokines), and the other with adjacent cysteines (CC cytokines). The genes for the two clans inhabit different chromosomes, number 4 for the CXC and number 17 for the CC, and the cytokines that they produce have different target cell preferences.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deuel, T.F., P.S. Keim, M. Farmer and R.L. Heinrikson. 1977. Amino acid sequence of human platelet factor 4. Proc. Natl. Acad. Sci. USA74: 2256–2258.PubMedCrossRefGoogle Scholar
  2. 2.
    Hermodson, M., G. Schmer, and K. Kurachi. 1977. Isolation, crystallization, and primary amino acid sequence of human platelet factor 4. J. Biol. Chem.252: 6276–6279.PubMedGoogle Scholar
  3. 3.
    Walz, D.A., V.Y. Wu, R. de Lamo, H. Dene, and L.E. McCoy. 1977. Primary structure of human platelet factor 4. Thromb. Res.11: 893–898.PubMedCrossRefGoogle Scholar
  4. 4.
    Morgan, F.J., F.S. Begg, and C.M. Chesterman. 1977. Primary structure of human platelet factor 4. Thromb. Haemost.38: 231–235.Google Scholar
  5. 5.
    Schmid, J. and C. Weissmann. 1987. Induction of mRNA for a serine protease and a ßthromboglobulin-like protein in mitogen-stimulated human leukocytes. J. Immunol.139: 250–256.PubMedGoogle Scholar
  6. 6.
    Yoshimura, T., K. Matsushima, S. Tanaka, E.A. Robinson, E. Appella, J.J. Oppenheim, and E.J. Leonard. 1987. Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc. Natl. Acad. Sci. USA84: 9233–9237.PubMedCrossRefGoogle Scholar
  7. 7.
    Walz, A., P. Peveri, H. Aschauer, and M. Baggiolini. 1987. Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem. Biophys. Res. Commun.149: 755–761.PubMedCrossRefGoogle Scholar
  8. 8.
    Holt, J.C., M.E. Harris, A.M. Holt, E. Lange, A. Henschen, and S. Niewiarowski. 1986. Characterization of human platelet basic protein, a precursor form of low-affinity platelet factor 4 and ß-thromboglobulin. Biochemistry. 25: 1988–1996.PubMedCrossRefGoogle Scholar
  9. 9.
    Castor, C.W., J.W. Miller, and D.A. Walz. 1983. Structural and biological characteristics of connective tissue activating peptide (CTAP-III), a major human platelet-derived growth factor. Proc. Natl. Acad. Sci. USA80: 765–769.PubMedCrossRefGoogle Scholar
  10. 10.
    Begg, G.S., D.S. Pepper, C.N. Chesterman, and F.J. Morgan. 1978. Complete covalent structure of human beta-thromboglobulin. Biochemistry. 17: 1739–1744.PubMedCrossRefGoogle Scholar
  11. 11.
    Luster, A.D., J.C. Unkeless, and J.V. Ravetch. 1985. r-Interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 315: 672–676.PubMedCrossRefGoogle Scholar
  12. 12.
    Luster, A.D. and J.V. Ravetch. 1987. Biochemical characterization of a gamma interferon-inducible cytokine (W-10). J. Exp. Med.166: 1084–1097.PubMedCrossRefGoogle Scholar
  13. 13.
    Baggiolini, M., A. Walz, and S.L. Kunkel. 1989. Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J. Clin. Invest.84: 1045–1049.PubMedCrossRefGoogle Scholar
  14. 14.
    Clore, G.M. and A.M. Gronenborn. NMR and X-ray analysis of the three-dimensional structure of interleukin-8. In: Cytokine. Vol. 4. Interleukin-8 (NAP-1) and related chemotactic cytokines, edited by Baggiolini, M. and Sorg, C. Basel: Karger, 1992, p. 18–40.Google Scholar
  15. 15.
    Mukaida, N., M. Shiroo, and K. Matsushima. 1989. Genomic structure of the human monocyte-derived neutrophil chemotactic factor IL-8. J. Immunol.143: 1366–1371.PubMedGoogle Scholar
  16. 16.
    Modi, W.S., M. Dean, H.N. Seuanez, N. Mukaida, K. Matsushima, and S.J. O’Brien. 1990. Monocyte-derived neutrophil chemotactic factor (MDNCF/IL-8) resides in a gene cluster alon g with several other members of the platelet factor 4 gene superfamily. Hum. Genet.84: 185–187.PubMedCrossRefGoogle Scholar
  17. 17.
    Samanta, A.K., J.J. Oppenheim, and K. Matsushima. 1989. Identification and characterization of specific receptors for monocyte-derived neutrophil chemotactic factor (MDNCF) on human neutrophils. J. Exp. Med.169: 1185–1189.PubMedCrossRefGoogle Scholar
  18. 18.
    Besemer, J., A. Hujber, and B. Kuhn. 1989. Specific binding, internalization, and degradation of human neutrophil activating factor by human polymorphonuclear leukocytes. J. Biol. Chem.264: 17409–17415.PubMedGoogle Scholar
  19. 19.
    Holmes, W.E., J. Lee, W.-J. Kuang, G.C. Rice, and W.I. Wood. 1991. Structure and functional expression of a human interleukin-8 receptor. Science253: 1278–1280.PubMedCrossRefGoogle Scholar
  20. 20.
    Murphy, P.M. and H.L. Tiffany. 1991. Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science253: 1280–1283.PubMedCrossRefGoogle Scholar
  21. 21.
    Baggiolini, M., P. Imboden, and P. Detmers. Neutrophil activation and the effects of interleukin8/neutrophil-activating peptide 1 (IL-8/NAP-1). In: Cytokines. Vol. 4. !nterleukin-8 (NAP-1) and related chemotactic cytokines, edited by Baggiolini, M. and Sorg, C. Basel: Karger, 1992, p. 1–17.Google Scholar
  22. 22.
    Obaru, K., M. Fukuda, S. Maeda, and K. Shimada. 1986. A cDNA clone used to study mRNA inducible in human tonsillar lymphocytes by a tumor promoter. J. Biochem. (Tokyo.) 99: 885–894.Google Scholar
  23. 23.
    Wolpe, S.D., G. Davatelis, B. Sherry, B. Beutler, D.G. Hesse, H.T. Nguyen, L.L. Moldawer, C.F. Nathan, S.F. Lowly, and A. Cerami. 1988. Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemokinetic properties. J. Exp. Med.167: 570–581.PubMedCrossRefGoogle Scholar
  24. 24.
    Davatelis, G., P. Tekamp Olson, S.D. Wolpe, K. Hermsen, C. Luedke, C. Gallegos, D. Coit, J. Merryweather, and A. Cerami. 1988. Cloning and characterization of a cDNA for murine macrophage inflammatory protein (MP), a novel monokine with inflammatory and chemokinetic properties. J. Exp. Med.167: 1939–1944.PubMedCrossRefGoogle Scholar
  25. 25.
    Sherry, B., P. Tekamp Olson, C. Gallegos, D. Bauer, G. Davatelis, S.D. Wolpe, F. Masiarz, D. Coit, and A. Cerami. 1988. Resolution of the two components of macrophage inflammatory protein 1, and cloning and characterization of one of those components, macrophage inflammatory protein 1 beta. J. Exp. Med.168: 2251–2259.PubMedCrossRefGoogle Scholar
  26. 26.
    Yoshimura, T., E.A. Robinson, S. Tanaka, E. Appella, J. Kuratsu, and EJ. Leonard. 1989. Purification and amino acid analysis of two human glioma-derived monocyte chemoattractants. J. Exp. Med.169: 1449–1459.PubMedCrossRefGoogle Scholar
  27. 27.
    Yoshimura, T., E.A. Robinson, S. Tanaka, E. Appella, and E.J. Leonard. 1989. Purification and amino acid analysis of two human monocyte chemoattractants produced by phytohemagglutininstimulated human blood mononuclear leukocytes. J. Immunol.142: 1956–1962.PubMedGoogle Scholar
  28. 28.
    Matsushima, K., C.G. Larsen, G.C. DuBois, and J.J. Oppenheim. 1989. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J. Exp. Med.169: 1485–1490.PubMedCrossRefGoogle Scholar
  29. 29.
    Miller, M.D., S. Hata, R. De Waal Malefyt, and M.S. Krangel. 1989. A novel polypeptide secreted by activated human T lymphocytes. J. Immunol.143: 2907–2916.PubMedGoogle Scholar
  30. 30.
    Schall, T.J., J. Jongstra, B.J. Dyer, J. Jorgensen, C. Clayberger, M.M. Davis, and A.M. Krensky. 1988. A human T cell-specific molecule is a member of a new gene family. J. Immunel.141: 1018–1025.Google Scholar
  31. 31.
    Schall, T.J., K. Bacon, K.J. Toy, and D.V. Goeddel. 1990. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature347: 669–671.PubMedCrossRefGoogle Scholar
  32. 32.
    Miller, M.D. and M.S. Krangel. 1992. The human cytokine I-309 is a monocyte chemoattractant. Proc. Natl. Acad. Sci. USA89: 2950–2954.PubMedCrossRefGoogle Scholar
  33. 33.
    Yoshimura, T., E.A. Robinson, E. Appella, K. Matsushima, S.D. Showalter, A. Skeel, and E.J. Leonard. 1989. Three forms of monocyte-derived neutrophil chemotactic factor (MDNCF) distinguished by different lengths of the amino-terminal sequence. Mol. Immunol.26: 87–93.PubMedCrossRefGoogle Scholar
  34. 34.
    Lindley, I., H. Aschauer, J.M. Seifert, C. Lam, W. Brunowsky, E. Kownatzki, M. Thelen, P. Peveri, B. Dewald, V. von Tschamer, A. Walz, and M. Baggiolini. 1988. Synthesis and expression in Escherichia coli of the gene encoding monocyte-derived neutrophil-activating factor. Biological equivalence between natural and recombinant neutrophil-activating factor. Proc. Natl. Acad. Sci. USA85: 9199–9203.PubMedCrossRefGoogle Scholar
  35. 35.
    Clark-Lewis, I., C. Schumacher, M. Baggiolini, and B. Moser. 1991. Structure-activity relationships of interleukin-8 determined using chemically synthesized analogs. Critical role of NH2-terminal residues and evidence for uncoupling of neutrophil chemotaxis, exocytosis, and receptor binding activities. J. Biol. Chem.266: 23128–23134.PubMedGoogle Scholar
  36. 36.
    Peveri, P., A. Walz, B. Dewald, and M. Baggiolini. 1988. A novel neutrophil-activating factor produced by human mononuclear phagocytes. J. Exp. Med.167: 1547–1559.PubMedCrossRefGoogle Scholar
  37. 37.
    Tanaka, S., E.A. Robinson, T. Yoshimura, K. Matsushima, E.J. Leonard, and E. Appella. 1988. Synthesis and biological characterization of monocyte-derived neutrophil chemotactic factor. FEBS. Lett.236: 467–470.PubMedCrossRefGoogle Scholar
  38. 38.
    Schroder, J.M., U. Mrowietz, E. Morita, and E. Christophers. 1987. Purification and partial biochemical characterization of a human monocyte-derived, neutrophil-activating peptide that lacks interleukin 1 activity. J. Immunol.139: 3474–3483.PubMedGoogle Scholar
  39. 39.
    Thelen, M., P. Peveri, P. Kernen, V. von Tschamer, A. Walz, and M. Baggiolini. 1988. Mechanism of neutrophil activation by NAF, a novel monocyte-derived peptide agonist. FASEB. J.2: 2702–2706.PubMedGoogle Scholar
  40. 40.
    Paccaud, J.-P., J.A. Schifferli, and M. Baggiolini. 1990. NAP-1/IL-8 induces upregulation of CR1 receptors in human neutrophil leukocytes. Biochem. Biophys. Res. Commun.166: 187–192.PubMedCrossRefGoogle Scholar
  41. 41.
    Detmers, P.A., S.K. Lo, E. Olsen-Egbert, A. Walz, M. Baggiolini, and Z.A. Cohn. 1990. Neutrophilactivating protein 1/interleukin 8 stimulates the binding activity of the leukocyte adhesion receptor CD11b/CD18 on human neutrophils. J. Exp. Med.171: 1155–1162.PubMedCrossRefGoogle Scholar
  42. 42.
    Detmers, P.A., D.E. Powell, A. Walz, I. Clark-Lewis, M. Baggiolini, and Z.A. Cohn. 1991. Differential effects of neutrophil-activating peptide 1/IL-8 and its homologues on leukocyte adhesion and phagocytoses. J. Immunol. 147: 4211–4217.PubMedGoogle Scholar
  43. 43.
    Leonard, E.J., A. Skeel, T. Yoshimura, K. Noer, S. Kutvirt, and D. Van Epps. 1990. Leukocyte specificity and binding of human neutrophil attractant/activation protein-1. J. Immunol.144: 1323–1330.Google Scholar
  44. 44.
    Walz, A., F. Meloni, I. Clark-Lewis, V. von Tscharner, and M. Baggiolini. 1991. [Ca2+]i changes and respiratory burst in human neutrophils and monocytes induced by NAP-1/interleukin-8, NAP-2, and gro/MGSA. J. Leukocyte Biol. 50: 279–286.PubMedGoogle Scholar
  45. 45.
    Kernen, P., M.P. Wymann, V. von Tscharner, D.A. Deranleau, P.-C. Tai, C.J. Spry, C.A. Dahinden, and M. Baggiolini. 1991. Shape changes, exocytosis, and cytosolic free calcium changes in stimulated human eosinophils. J. Clin. Invest.87: 2012–2017.PubMedCrossRefGoogle Scholar
  46. 46.
    Krieger, M., T. Brunner, S.C. Bischoff, V. von Tschamer, A. Walz, B. Moser, M. Baggiolini, and C.A. Dahinden. 1992. Activation of human basophils through the IL-8 receptor. J. Immunol.149: 2662–2667.PubMedGoogle Scholar
  47. 47.
    Dahinden, C.A., Y. Kurimoto, A.L. De Weck, I. Lindley, B. Dewald, and M. Baggiolini. 1989. The neutrophil-activating peptide NAF/NAP-1 induces histamine and leukotriene release by interleukin 3-primed basophils. J. Exp. Med.170: 1787–1792.PubMedCrossRefGoogle Scholar
  48. 48.
    Larsen, C.G., A.O. Anderson, E. Appella, J.J. Oppenheim, and K. Matsushima. 1989. The neutrophilactivating protein (NAP-1) is also chemotactic for T lymphocytes. Science243: 1464–1466.PubMedCrossRefGoogle Scholar
  49. 49.
    Bacon, K.B. and R.D.R. Camp. 1990. Interleukin (IL)-8-induced in vitrohuman lymphocyte migration is inhibited by cholera and pertussis toxins and inhibitors of protein kinase C. Biochem. Biophys. Res. Commun.169: 1099–1104.PubMedCrossRefGoogle Scholar
  50. 50.
    Wilkinson, P.C. and I. Newman. 1992. Identification of IL-8 as a locomotor attractant for activated human lymphocytes in mononuclear cell cultures with anti-CD3 or purified protein derivative of Mycobacterium tuberculosis. J. Immunol. 149: 2689–2694.Google Scholar
  51. 51.
    Grob, P.M., E. David, T.C. Warren, R.P. DeLeon, P.R. Farina, and C.A. Homon. 1990. Characterization of a receptor for human monocyte-derived neutrophil chemotactic factor/interleukin8. J. Biol. Chem.265: 8311–8316.PubMedGoogle Scholar
  52. 52.
    Colditz, I., R. Zwahlen, B. Dewald, and M. Baggiolini. 1989. In vivo inflammatory activity of neutrophil-activating factor, a novel chemotactic peptide derived from human monocytes. Am. J. Pathol.134: 755–760.PubMedGoogle Scholar
  53. 53.
    Colditz, I.G., R.D. Zwahlen, and M. Baggiolini. 1990. Neutrophil accumulation and plasma leakage induced in vivo by neutrophil-activating peptide-1. J. Leukocyte Biol.48: 129–137.PubMedGoogle Scholar
  54. 54.
    Swensson, O., C. Schubert, E. Christophers, and J.-M. Schröder. 1991. Inflammatory properties of neutrophil-activating protein-1/interleukin 8 (NAP-1/IL-8) in human skin: A light-and electronmicroscopic study. J. Invest. Dermatol.96: 682–689.PubMedCrossRefGoogle Scholar
  55. 55.
    Leonard, E.J., T. Yoshimura, S. Tanaka, and M. Raffeld. 1991. Neutrophil recruitment by intradermally injected neutrophil attractant/activation protein-1. J. Invest. Dermatol.96: 690–694.PubMedCrossRefGoogle Scholar
  56. 56.
    Derynck, R., E. Balentien, J.H. Han, H.G. Thomas, D. Wen, A.K. Samantha, C.O. Zachariae, P.R. Griffin, R. Brachmann, W.L. Wong, K. Matsushima, and A. Richmond. 1990. Recombinant expression, biochemical characterization, and biological activities of the human MGSA/gro protein. Biochemistry29: 10225–10233.CrossRefGoogle Scholar
  57. 57.
    Bordoni, R., R. Fine, D. Murray, and A. Richmond. 1990. Characterization of the role of melanoma growth stimulatory activity (MGSA) in the growth of normal melanocytes, nevocytes, and malignant melanocytes. J. Cell. Biochem.44: 207–219.PubMedCrossRefGoogle Scholar
  58. 58.
    Moser, B., I. Clark-Lewis, R. Zwahlen, and M. Baggiolini. 1990. Neutrophil-activating properties of the melanoma growth-stimulatory activity. J. Exp. Med.171: 1797–1802.PubMedCrossRefGoogle Scholar
  59. 59.
    Haskill, S., A. Peace, J. Morns, S.A. Sporn, A. Anisowicz, S.W. Lee, T. Smith, G. Martin, P. Ralph, and R. Sager. 1990. Identification of three related human GROgenes encoding cytokine functions. Proc. Natl. Acad. Sci. USA87: 7732–7736.PubMedCrossRefGoogle Scholar
  60. 60.
    Walz, A., R. Burgener, B. Car, M. Baggiolini, S.L. Kunkel, and R.M. Strieter. 1991. Structure and neutrophil-activating properties of a novel inflammatory peptide (ENA-78) with homology to interleukin 8. J. Exp. Med.174: 1355–1362.PubMedCrossRefGoogle Scholar
  61. 61.
    Walz, A., B. Dewald, V. von Tscharner, and M. Baggiolini. 1989. Effects of the neutrophil-activating peptide NAP-2, platelet basic protein, connective tissue-activating peptide III and platelet factor 4 on human neutrophils. J. Exp. Med.170: 1745–1750.PubMedCrossRefGoogle Scholar
  62. 62.
    Baggiolini, M., B. Dewald, and A. Walz. Interleukin-8 and related chemotactic cytokines. In: Inflammation: Basic Principles and Clinical Correlates, edited by Gallin, J.I., Goldstein, I.M. and Snyderman, R. New York: Raven Press, Ltd., 1992, p. 247–263.Google Scholar
  63. 63.
    Moser, B., C. Schumacher, V. von Tschamer, I. Clark-Lewis, and M. Baggiolini. 1991. Neutrophilactivating peptide 2 and gro/melanoma growth-stimulatory activity interact wi th neutrophil-activating peptide l/interleukin 8 receptors on human neutrophils. J. Biol. Chem.266: 10666–10671.PubMedGoogle Scholar
  64. 64.
    Schumacher, C., I. Clark-Lewis, M. Baggiolini, and B. Moser. 1992. High-and low-affinity binding of GROa and neutrophil-activating peptide 2 to interleukin 8 receptors on human neutrophils. Proc. Natl. Acad. Sci. USA89: 10542–10546.PubMedCrossRefGoogle Scholar
  65. 65.
    Lee, J., R. Horuk, G.C. Rice, G.L. Bennett, T. Camerato, and W.I. Wood. 1992. Characterization of two high affinity human interleukin-8 receptors. J. Biol. Chem.267: 16283–16287.PubMedGoogle Scholar
  66. 66.
    Hébert, C.A., R.V. Vitangcol, and J.B. Baker. 1991. Scanning mutagenesis of interleukin-8 identifies a cluster of residues required for receptor binding. J. Biol. Chem.266: 18989–18994.PubMedGoogle Scholar
  67. 67.
    Dewald, B., B. Moser, L. Barella, C. Schumacher, M. Baggiolini, and I. Clark-Lewis. 1992. IP-10, a gamma-interferon-inducible protein related to interleukin-8, lacks neutrophil activating properties. Immunol. Lett.32: 81–84.PubMedCrossRefGoogle Scholar
  68. 68.
    Robinson, E.A., T. Yoshimura, EJ. Leonard, S. Tanaka, P.R. Griffin, J. Shabanowitz, D.F. Hunt, and E. Appella. 1989. Complete amino acid sequence of a human monocyte chemoattractant, a putative mediator of cellular immune reactions. Proc. Natl. Acad. Sci. USA86: 1850–1854.PubMedCrossRefGoogle Scholar
  69. 69.
    Furutani, Y., H. Nomura, M. Notake, Y. Oyamada, T. Fukui, M. Yamada, C.G. Larsen, J.J. Oppenheim, and K. Matsushima. 1989. Cloning and sequencing of the cDNA for human monocyte chemotactic and activating factor (MCAF). Biochem. Biophys. Res. Commun.159: 249–255.PubMedCrossRefGoogle Scholar
  70. 70.
    Yoshimura, T., N. Yuhki, S.K. Moore, E. Appella, M.I. Lerman, and E.J. Leonard. 1989. Human monocyte chemoattractant protein-1 (MCP-1). Full-length cDNA cloning, expression in mitogenstimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE. FEBS. Lett.244: 487–493.PubMedCrossRefGoogle Scholar
  71. 71.
    Gronenborn, A.M. and G.M. Clore. 1991. Modeling the three-dimensional structure of the monocyte chemo-attractant and activating protein MCAF/MCP-1 on the basis of the solution structure of interleukin-8. Protein Eng. 4: 263–269.PubMedCrossRefGoogle Scholar
  72. 72.
    Jiang, Y., A.J. Valente, M.J. Williamson, L. Zhang, and D.T. Graves. 1990. Post-translational modification of a monocyte-specific chemoattractant synthesized by glioma, osteosarcoma, and vascular smooth muscle cells. J. Biol. Chem.265: 18318–18321.PubMedGoogle Scholar
  73. 73.
    Jiang, Y., L.A. Tabak, AJ. Valente, and D.T. Graves. 1991. Initial characterization of the carbohydrate structure of MCP-1. Biochem. Biophys. Res. Commun.178: 1400–1404.PubMedCrossRefGoogle Scholar
  74. 74.
    Rollins, B.J., P. Stier, T. Ernst, and G.W. Wong. 1989. The human homolog of the JE gene encodes a monocyte secretory protein. Mol. Cell Biol.9: 4687–4695.PubMedGoogle Scholar
  75. 75.
    Burd, P.R., GJ. Freeman, S.D. Wilson, M. Berman, R. DeKruyff, P.R. Billings, and M.E. Dorf. 1987. Cloning and characterization of a novel T cell activation gene. J. Immunol.139: 3126–3131.PubMedGoogle Scholar
  76. 76.
    Rollins, BJ., A. Walz, and M. Baggiolini. 1991. Recombinant human MCP-1/JE induces chemotaxis, calcium flux, and the respiratory burst in human monocytes. Blood78: 1112–1116.PubMedGoogle Scholar
  77. 77.
    Sozzani, S., W. Luini, M. Molino, P. Jílek, B. Bottazzi, C. Cerletti, K. Matsushima, and A. Mantovani. 1991. The signal transduction pathway involved in the migration induced by a monocyte chemotactic cytokine. J. Immunol.147: 2215–2221.PubMedGoogle Scholar
  78. 78.
    Kuna, P., S.R. Reddigari, D. Rucinski, J.J. Oppenheim, and A.P. Kaplan. 1992. Monocyte chemotactic and activating factor is a potent histamine-releasing factor for human basophils. J. Exp. Med.175: 489–493.PubMedCrossRefGoogle Scholar
  79. 79.
    Alam, R., M.A. Lett-Brown, P.A. Forsythe, D.J. Anderson-Walters, C. Kenamore, C. Kormos, and J.A. Grant. 1992. Monocyte chemotactic and activating factor is a potent histamine-releasing factor for basophils. J. Clin. Invest.89: 723–728.PubMedCrossRefGoogle Scholar
  80. 80.
    Bischoff, S.C., M. Krieger, T. Brunner, and C.A. Dahinden. 1992. Monocyte chemotactic protein 1 is a potent activator of human basophils. J. Exp. Med.175: 1271–1275.PubMedCrossRefGoogle Scholar
  81. 81.
    Kuna, P., S.R. Reddigari, T.J. Schall, D. Rucinski, M.Y. Viksman, and A.P. Kaplan. 1992. Rantes, a monocyte and T lymphocyte chemotactic cytokine releases histamine from human basophils. J. Immunol.149: 636–642.PubMedGoogle Scholar
  82. 82.
    Alam, R., P.A. Forsythe, S. Stafford, M.A. Lett-Brown, and J.A. Grant. 1992. Macrophage inflammatory protein-la activates basophils and mast cells. J. Exp. Med.176: 781–786.PubMedCrossRefGoogle Scholar
  83. 83.
    Rot, A., M. Krieger, T. Brunner, S.C. Bischoff, T.J. Schall, and C.A. Dahinden. 1992. RANTES and macrophage inflammatory protein la induce the migration and activation of normal human eosinophil granulocytes. J. Exp. Med.176: 1489–1495.PubMedCrossRefGoogle Scholar
  84. 84.
    Schultz, D.R., J.E. Volanakis, P.I. Arnold, N.L. Gottlieb, K. Sakai, and R.M. Stroud. 1974. Inactivation of Cl in rheumatoid synovial fluid, purfied Cl and Cl esterase, by gold compounds. Clin. Exp. Immunol.17: 395–406.PubMedGoogle Scholar
  85. 85.
    Yoshimura, T. and E.J. Leonard. 1990. Identification of high affinity receptors for human monocyte chemoattractant protein-1 on human monocytes. J. Immunol.145: 292–297.PubMedGoogle Scholar
  86. 86.
    Valente, A.J., M.M. Rozek, C.J. Schwartz, and D.T. Graves. 1991. Characterization of monocyte chemotactic protein-1 binding to human monocytes. Biochem. Biophys. Res. Commun.176: 309–314.PubMedCrossRefGoogle Scholar
  87. 87.
    Napolitano, M., K.B. Seamon, and W.J. Leonard. 1990. Identification of cell surface receptors for the Act-2 cytokine. J. Exp. Med.172: 285–289.PubMedCrossRefGoogle Scholar
  88. 88.
    Oh, K.-0., Z. Zhou, K.-K. Kim, H. Samanta, M. Fraser, Y.-J. Kim, H.E. Broxmeyer, and B.S. Kwon. 1991. Identification of cell surface receptors for murine macrophage inflammatory protein-la. J. Immunol.147: 2978–2983.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Marco Baggiolini
    • 1
  1. 1.Theodor-Kocher InstituteUniversity of BernSwitzerland

Personalised recommendations