Myocardial Collagen and Its Functional Role

  • Joseph S. Janicki
  • Beatriz B. Matsubara
  • Ameer Kabour
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 346)


Even though normally present in relatively small amounts, myocardial collagen strongly influences ventricular diastolic function. Removal of less than half of the normal amount results in a dilated ventricle with increased compliance. In contrast, an abnormal increase in collagen concentration results in a stiffer myocardium and ventricular diastolic dysfunction.


Diastolic Dysfunction Collagen Matrix Pressure Overload Oxidize Glutathione Collagen Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borg TK, Caulfield JB. The collagen matrix of the heart. Fed Proceedings 1981; 40: 2037–2041.Google Scholar
  2. 2.
    Janicki JS, Matsubara BB. Myocardial collagen and left ventricular diastolic function. In: Gaasch WH, LeWinter MM (eds), Left Ventricular Diastolic Dysfunction. Philadelphia: Lea&Febiger, 1993 (in press).Google Scholar
  3. 3.
    Matsubara BB, Henegar JR, Janicki JS. Role of normal fibrillar collagen matrix in determining size and function of rat left ventricle. Am J Physiol 1993; in press.Google Scholar
  4. 4.
    Robinson TF, Factor SM, Sonnenblick EH. The heart as a suction pump. Sci Am 1986; 254: 84–91.PubMedCrossRefGoogle Scholar
  5. 5.
    Factor SM, Robinson TF, Dominitz R, Cho S. Alterations of the myocardial skeletal framework in acute myocardial infarction with and without ventricular rupture. Am J Cardiovas Pathol 1986; 1: 91–97.Google Scholar
  6. 6.
    Matsubara BB, Henegar JR, Janicki JS. Functional and morphological consequences of induced myocardial collagen damage. Circulation 1992; 86: 1–171.CrossRefGoogle Scholar
  7. 7.
    Weber KT, Janicki JS, Shroff SG, Pick R, Chen RM, Bashey RI. Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ Res 1988; 62: 757–765.PubMedCrossRefGoogle Scholar
  8. 8.
    Montfort I, Perez-Tamayo R. The distribution of collagenase in normal rat tissues. J Histochem Cytochem 1975; 23: 910–920.PubMedCrossRefGoogle Scholar
  9. 9.
    O’Brien LJ, Moore CM. Connective tissue degradation and distensibility characteristics of the non-living heart. Experientia 1966; 22: 845–847.PubMedCrossRefGoogle Scholar
  10. 10.
    Caulfield JB, Wolkowicz PE. Mechanisms for cardiac dilatation. Heart Failure J 1990; 6: 138–150.Google Scholar
  11. 11.
    Zhao M, Zhang H, Robinson TF, Factor SM, Sonnenblick EH, Eng C. Profound structural alterations of the extracellular collagen matrix in postischemic dysfunctional (“stunned”) but viable myocardium. J Am Coll Cardiol 1987; 10: 1322–1334.PubMedCrossRefGoogle Scholar
  12. 12.
    Weber KT, Pick R, Janicki JS, Gadodia G, Lakier JB. Inadequate type I collagen fibers in dilated cardiopathy. Am Heart J 1988; 116: 1641–1646.PubMedCrossRefGoogle Scholar
  13. 13.
    Abrahams C, Janicki JS, Weber KT. Myocardial hypertrophy in the macaque fascicularis: Structural remodeling of the collagen matrix. Lab Invest 1987; 56: 676–683.PubMedGoogle Scholar
  14. 14.
    Contard F, Koteliansky V, Marotte F, Dubus I, Rappaport L, Samuel J. Specific alterations in the distribution of extracellular matrix components within rat myocardium during the development of pressure overload. Lab Invest 1991; 64: 65–75.PubMedGoogle Scholar
  15. 15.
    Doering CW, Jalil JE, Janicki JS, Pick R, Aghili S, Abrahams C, Weber KT. Collagen network remodeling and diastolic stiffness of the rat left ventricle with pressure overload hypertrophy. Cardiovasc Res 1988; 22: 686–695.PubMedCrossRefGoogle Scholar
  16. 16.
    Pearlman ES, Weber KT, Janicki JS, Pietra G, Fishman AP. Muscle fiber orientation and connective tissue content in the hypertrophied human heart. Lab Invest 1982; 46: 158–164.PubMedGoogle Scholar
  17. 17.
    Narayan S, Janicki JS, Shroff SG, Pick R, Weber KT. Myocardial collagen and mechanics after preventing hypertrophy in hypertensive rats. Am J Hypertens 1988; 2: 675–682.Google Scholar
  18. 18.
    Brilla CG, Janicki JS, Weber KT. Cardioreparative effects of lisinopril in rats with genetic hypertension and left ventricular hypertrophy. Circulation 1991; 83: 1771–1779.PubMedCrossRefGoogle Scholar
  19. 19.
    Brilla CG, Pick R, Tan LB, Janicki JS, Weber KT. Remodeling of the rat right and left ventricles in experimental hypertension. Circ Res 1990; 67: 1355–1364.PubMedCrossRefGoogle Scholar
  20. 20.
    Caulfield JB. Alterations in cardiac collagen with hypertrophy. Perspect Cardiovasc Res 1983; 8: 49–57.Google Scholar
  21. 21.
    Pick R, Janicki IS, Weber KT. Myocardial fibrosis in nonhuman primate with pressure overload hypertrophy. Am J Pathol 1989; 135: 771–781.PubMedGoogle Scholar
  22. 22.
    Bing OHL, Matsushita S, Fanburg BL, Levine HI. Mechanical properties of rat cardiac muscle during experimental hypertrophy. Circ Res 1971; 28: 234–245.PubMedCrossRefGoogle Scholar
  23. 23.
    Holubarsch CH, Holubarsch T, Jacob R, Medugorac I, Thiedemann K. Passive elastic properties of myocardium in different models and stages of hypertrophy: A study comparing mechanical, chemical, and morphometric parameters. Perspect Cardiovasc Res 1983; 7: 323–336.Google Scholar
  24. 24.
    Jalil JE, Doering CW, Janicki JS, Pick R, Shroff S, Weber KT. Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ Res 1989; 64: 1041–1050.PubMedCrossRefGoogle Scholar
  25. 25.
    Carroll EP, Janicki JS, Pick R, Weber KT. Myocardial stiffness and reparative fibrosis following coronary embolization in the rat. Cardiovasc Res 1989; 23: 655–661.PubMedCrossRefGoogle Scholar
  26. 26.
    Bing OHL, Fanburg BL, Brooks WW, Matsushita S. The effect of the lathyrogen B—amino proprionitrile (BAPN) on the mechanical properties of experimentally hypertrophied rat cardiac muscle. Circ Res 1978; 43: 632–637.PubMedCrossRefGoogle Scholar
  27. 27.
    Gelpi RJ, Pasipoularides A, Lader AS, Patrick TA, Chase N, Hittinger L, Shannon RP, Bishop SP, Vatner SF. Changes in diastolic cardiac function in developing and stable perinephritic hypertension in conscious dogs. Circ Res 1991; 68: 555–567.PubMedCrossRefGoogle Scholar
  28. 28.
    MacFarlane N, Northridge DB, Wright AR, Grant S, Dargie HJ. A comparative study of left ventricular structure and function in elite athletes. Brit J Sports Med 1991; 25: 45–48.CrossRefGoogle Scholar
  29. 29.
    Nixon JV, Wright AR, Porter TR, Roy V, Arrowood JA. Effects of exercise on left ventricular diastolic performance in trained athletes. Am J Cardiol 1991; 68: 945–949.PubMedCrossRefGoogle Scholar
  30. 30.
    Shapiro LM, McKenna WJ. Left ventricular hypertrophy: relation of structure to diastolic function in hypertension. Brit Heart J 1984; 51: 637–642.PubMedCrossRefGoogle Scholar
  31. 31.
    Shahi M, Thom S, Poulter N, Sever PS, Foale RA. Regression of hypertensive left ventricular hypertrophy and left ventricular diastolic function. Lancet 1990; 336: 458–461.PubMedCrossRefGoogle Scholar
  32. 32.
    Szlachcic J, Tubau JF, O’Kelly B, Massie BM. Correlates of diastolic filling abnormalities in hypertension: A Doppler echocardiographic study. Am Heart J 1990; 120: 386–391.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Joseph S. Janicki
    • 1
  • Beatriz B. Matsubara
    • 2
  • Ameer Kabour
    • 1
  1. 1.Dalton Research Center and Department of Internal MedicineUniversity of MissouriColumbiaUSA
  2. 2.Universidade Estadual Paulista-BotucatuBrasil

Personalised recommendations