CP- and T- Violations in the Standard Model

  • Jean-Marc Gérard
Part of the NATO ASI Series book series (NSSB, volume 311)


The Newton’s law
$$m{{{d^2}\vec x} \over {d{t^2}}} = \vec F(\vec x)$$
is quadratic in the time variable and, consequently, invariant under Time-reversal
$$t \to - t$$
if a non-dissipative force \(\vec F\) acts on a particle of mass m. In other words, if \(\vec x(t)\) is a trajectory, so is \(\vec x( - t)\). Such a microscopic reversibility seems to contradict the macroscopic “Arrow of Time” we have to face everyday.


Electric Dipole Moment Goldstone Boson Dirac Matrice Partial Decay Width Standard Electroweak Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    See A. Pais in “CP-violation in Particle Physics and Astrophysics”, Ed. J. Tran Thanh Van (Edition Frontières 1990).Google Scholar
  2. [2]
    J.H. Christenson, J.W. Cronin, V.L. Fitch and R. Turlay, Phys. Rev. Lett. 13 (1964) 138.ADSCrossRefGoogle Scholar
  3. [3]
    S.L. Glashow, Nucl. Phys. 22 (1961) 579.CrossRefGoogle Scholar
  4. [3a]
    S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264.ADSCrossRefGoogle Scholar
  5. [3b]
    A. Salam, in Proc. 8 th Nobel Symposium, Aspenäsgarden, ed. N. Svartholm (Almqvist and Wiksell, Stockholm, 1968), p. 367.Google Scholar
  6. [4]
    C. Jarlskog, Phys. Rev. Lett. 55 (1985) 1039ADSCrossRefGoogle Scholar
  7. [4a]
    C. Jarlskog, Z. Phys. C. 29 (1985) 491ADSCrossRefGoogle Scholar
  8. [5]
    N. Cabibbo, Phys. Rev. Lett. 10 (1963) 531.ADSCrossRefGoogle Scholar
  9. [5a]
    M. Kobayashi and T. Maskawa, Progr. Theor. Phys. 49 (1973) 652.ADSCrossRefGoogle Scholar
  10. [6]
    Review of Particle Properties, Particle Data Group, Phys. Lett. 239 B (1990) 1.Google Scholar
  11. [7]
    L. Wolfenstein, Phys. Rev. Lett. 51 (1983) 1945.ADSCrossRefGoogle Scholar
  12. [8]
    J. Schwinger, Phys. Rev. 82 (1951) 914.MathSciNetADSCrossRefMATHGoogle Scholar
  13. [8a]
    G. Lüders, Dansk. Math. Fys. Medd. 28, No. 5 (1954) 1.Google Scholar
  14. [8b]
    W. Pauli, in Niels Bohr and the development of Physics, ed. W. Pauli, Pergamon Press, New York (1955).Google Scholar
  15. [9]
    A. Pais and S.B. Treiman, Phys. Rev. D12 (1975) 2744.ADSGoogle Scholar
  16. [10]
    M. Bander, D. Silverman and A. Soni, Phys. Rev. Lett. 43 (1979) 242.ADSCrossRefGoogle Scholar
  17. [10a]
    J.-M. Gérard and W.-S. Hou, Phys. Rev. D43 (1991) 2909.ADSGoogle Scholar
  18. [11]
    See for example I.I. Bigi, V.A. Khoze, N.G. Uraltsev and A.I. Sanda in “CP-violation”, Ed. C. Jarlskog (World Scientific, Singapore 1989).Google Scholar
  19. [12]
    S. Weinberg, Phys. Rev. D12 (1975) 3583.ADSGoogle Scholar
  20. [13]
    G. ’t Hooft, Phys. Rev. Lett. 37 (1976) 8.ADSCrossRefGoogle Scholar
  21. [14]
    J.S. Bell and R. Jackiw, Nuovo Cimento 60A (1969) 47.ADSGoogle Scholar
  22. [14a]
    S.L. Adler, Phys. Rev. 177 (1969) 2426.ADSCrossRefGoogle Scholar
  23. [14b]
    S.L. Adler and W.A. Bardeen, Phys. Rev. 182 (1969) 1517.ADSCrossRefGoogle Scholar
  24. [15]
    P. Di Vecchia and G. Veneziano, Nucl. Phys. B171 (1980) 253.ADSCrossRefGoogle Scholar
  25. [15a]
    C. Rosenzweig, J. Schechter and C.G. Iranern, Phys. Rev. D21 (1980) 3388.ADSGoogle Scholar
  26. [16]
    E. Witten, Ann. Phys. 128 (1980) 363.ADSCrossRefGoogle Scholar
  27. [17]
    R.J. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Phys. Lett. 88B (1979) 123 ; 91B (1980) 487 (E).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Jean-Marc Gérard
    • 1
  1. 1.Institut de Physique ThéoriqueUniversité Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations