Advertisement

Growth Factors and Malignant Transformation

  • Stuart A. Aaronson
  • Toru Miki
  • Kimberly Meyers
  • Andrew Chan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 348)

Abstract

In the early 1980’s, approaches aimed at identifying the functions of retroviral oncogenes converged with efforts to investigate normal mitogenic signaling by growth factors. A number of retroviral oncogene products were found to be similar to the protein kinase encoded by v-src product1. Unlike many protein kinases that phosphorylate serine or threonine residues, the v-src product is a protein kinase that specifically phosphorylates tyrosine residues2. Purification and sequencing of growth factors and their receptors revealed that the platelet derived growth factor (PDGF) B-chain is similar to the predicted v-sis oncogene product3 and that the v-erbB oncogene product, which has sequence similarity to the v-src product, is a truncated form of the EGF receptor4. Binding of EGF to its receptor results in autophosphorylation of the receptor on tyrosine5. Oncogenes activated by a variety of mechanisms6 frequently have been shown to encode growth factors, receptor tyrosine kinases or downstream effectors.

Keywords

Tyrosine Kinase Tyrosine Phosphorylation Platelet Derive Growth Factor GTPase Activate Protein Guanine Nucleotide Binding Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Collert and R. Erickson, Protein kinase activity associated with the avian sarcoma virus src gene productProc. Natl. Acad. Sci. USA. 75:2021 (1978).CrossRefGoogle Scholar
  2. 2.
    T. Hunter and B. Sefton, Transforming gene product of Rous sarcoma virus phosphorylates tyrosine, Proc. Natl Acad. Sci. USA. 77:1311 (1980).PubMedCrossRefGoogle Scholar
  3. 3.
    R. Doolittle, M.W. Hunkapiller, L.E. Hood, S.G. Devare, K.C., Robbins, S.A. Aaronson, and H.N. Antoniades, Simian sarcoma virus oncogene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor, Science 221:275 (1983)PubMedCrossRefGoogle Scholar
  4. 3.a
    M. Waterfield, G.T. Scrace, N. Whittle, P. Stroobant, A. Johnsson, A. Wasteson, B. Westermark, C.H. Heldin, J.S. Huang, and T.F. Deuel, Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus, Nature 304:35 (1983).PubMedCrossRefGoogle Scholar
  5. 4.
    J. Downward, Y. Yarden, E. Mayes, G. Scrace, N. Totty, P. Stockwell, A. Ullrich, J. Schlessinger, and M.D. Waterfield, Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences, Nature 307:521 (1984).PubMedCrossRefGoogle Scholar
  6. 5.
    G. Carpenter and S. Cohen, Epidermal growth factor, J. Biol. Chem. 165:7709 (1990).Google Scholar
  7. 6.
    J.M. Bishop, Molecular themes in oncogenesis, Cell 64:235 (1991).PubMedCrossRefGoogle Scholar
  8. 7.
    W.J. Pledger, CD. Stiles, H.N. Antoniades, and C.D. Scher, Induction of DNA synthesis in BALB/c-3T3 cells by serum components: reevaluation of the commitment process, Proc. Natl. Acad. Sci. USA. 74:4481 (1977)PubMedCrossRefGoogle Scholar
  9. 7.a
    W.J. Pledger, CD. Stiles, H.N. Antonaides, and C.D. Scher, An ordered sequence of events is required before BALB/c-3T3 cells become committed to DNA synthesis, ibid. 75:2839 (1978).Google Scholar
  10. 8.
    B. Westermark and C.H. Heldin, Similar action of platelet-derived growth factor and epidermal growth factor in the prereplicative phase of human fibroblasts suggests a common intracellular pathway, J. Cell Physiol. 124:43 (1985).PubMedCrossRefGoogle Scholar
  11. 9.
    E.B. Leof, W. Wharton, J.J. Van Wyk, E.J. O’Keefe, and W.J. Pledger, Epidermal growth factor (EGF) and somatomedin C regulate Gl progression in competent BALB/c-3T3 cells, Exp. Cell Res. 141:107 (1982)PubMedCrossRefGoogle Scholar
  12. 9.a
    E.B. Leof, J.J. Van Wyk, E.J. O’Keefe, and W.J. Pledger, Epidermal growth factor (EGF) is required only during the traverse of early Gl in PDGF stimulated density-arrested BALB/c-3T3 cells, ibid. 147:202 (1983).Google Scholar
  13. 10.
    D. Wexler, T.P. Fleming, P.P. Di Fiore, and S.A. Aaronson, unpublished observations.Google Scholar
  14. 11.
    A.B. Pardee, Gl events and regulation of cell proliferation, Science 246:603 (1989).PubMedCrossRefGoogle Scholar
  15. 12.
    H.L. Moses, E.Y. Yang, and J.A. Pietenpol, TGF-beta stimulation and inhibition of cell proliferation: new mechanistic insights, Cell 63:245 (1990).PubMedCrossRefGoogle Scholar
  16. 13.
    A.H. Wyllie, K.A. Rose, R.G. Morris, CM. Steel, E. Foster, and D.A. Spandidos, Rodent fibroblast tumours expressing human myc and ras genes: growth, metastasis and endogenous oncogene expression, Br. J. Cancer 56:251 (1987)PubMedCrossRefGoogle Scholar
  17. 13.a
    G.T. Williams, Programmed cell death: apoptosis and oncogenesis, Cell 65:1097 (1991).PubMedCrossRefGoogle Scholar
  18. 14.
    D. Metcalf, The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells, Nature 339:27 (1989).PubMedCrossRefGoogle Scholar
  19. 15.
    F. Walker, N.A. Nicola, D. Metcalf, and A.N. Burgess, Hierarchical down-modulation of hemopoietic growth factor receptors, Cell 43:269 (1985)PubMedCrossRefGoogle Scholar
  20. 15a.
    B.C. Gliniak and L.R. Rohrschneider, Expression of the M-CSF receptor is controlled posttranscriptionally by the dominant actions of GM-CSF or multi-CSF, ibid. 63:1073 (1990).Google Scholar
  21. 16.
    R.D. McKinnon, T. Matsui, M. Dubois-Dalcq, and S.A. Aaronson, FGF modulates the PDGF-driven pathway of oligodendrocyte development, Neuron 5:603 (1990).PubMedCrossRefGoogle Scholar
  22. 17.
    J.H. Pierce, E. Di Marco, G.W. Cox, D. Lombardi, M. Ruggiero, L. Varesio, L.M. Wang, G.G. Choudhury, A.Y. Sakaguchi, and P.P. Di Fiore, Macrophage-colony-stimulating factor (CSF-1) induces proliferation, chemotaxis, and reversible monocytic differentiation in myeloid progenitor cells transfected with the human c-finslCSF-1 receptor cDNA, Proc. Natl. Acad. Sci. USA. 87:5613 (1990)PubMedCrossRefGoogle Scholar
  23. 17a.
    L. Rohrschneider and D. Metcalf, Induction of macrophage colony-stimulating factor-dependent growth and differentiation after introduction of the murine c-fms gene into FDC-P1 cells, Mol.Cell.Biol. 9:5081 (1989).PubMedGoogle Scholar
  24. 18.
    M.F. Roussel, T.J. Dull, C.W. Rèttenmier, P. Ralph, A. Ullrich, and C.J. Sherr, Transforming potential of the c-fms proto-oncogene (CSF-1 receptor), Nature 325:549 (1987)PubMedCrossRefGoogle Scholar
  25. 18a.
    J.H. Pierce, M. Ruggiero, T.P. Fleming, P.P. Di Fiore, J.S. Greenberger, L. Varticovski, J. Schlessinger, G. Rovera, and S.A. Aaronson, Signal transduction through the EGF receptor transfected in IL-3 -dependent hematopoietic cells, Science 239:628 (1988)PubMedCrossRefGoogle Scholar
  26. 18b.
    T. van Rüden and E.F. Wagner, Expression of functional human EGF receptor on murine bone marrow cells, EMBO J. 7:2749 (1988).Google Scholar
  27. 19.
    A. Ullrich and J. Schlessinger, Signal transduction by receptors with tyrosine kinase activity, Cell 61:203(1990).PubMedCrossRefGoogle Scholar
  28. 20.
    C.I. Bargnlann, M.C. Hung, and R.A. Weinberg, Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of pl85, Cell 45:649 (1986)CrossRefGoogle Scholar
  29. 20a.
    O. Segatto, C.R. King, J.H. Pierce, P.P. Di Fiore, and S.A. Aaronsôtì, Different structural alterations upregulate in vitro tyrosine kinase activity and transforming potency of the erbB-2 gene, Mol. Cell. Biol 8:5570 (1988).PubMedGoogle Scholar
  30. 21.
    Y. Yarden and A. Ullrich, Growth factor receptor tyrosine kinases, Annu. Rev. Biochem. 57:443 (1988).PubMedCrossRefGoogle Scholar
  31. 22.
    C.A. Koch, D. Anderson, M.F. Moran, C. Ellis, and T. Pawson, SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins, Science 252:668 (1991).PubMedCrossRefGoogle Scholar
  32. 23.
    C.J. Sherr, C.W. Rettenmier, R. Sacca, M.F. Roussel, A.T. Look, and E.R. Stanley, The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1, Cell 41:665 (1985)PubMedCrossRefGoogle Scholar
  33. 23a.
    P. Besmer, J.E. Murphy, P.C. Goerge, F.H. Qiu, P.J. Bergold, L. Lederman, H.W. Snyder Jr., D. Brodeur, E.E. Zuckerman, and W.D. Hardy, A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family, Nature 320:415 (1986)PubMedCrossRefGoogle Scholar
  34. 23b.
    D.R. Smith, P.K. Vogt, and M.J. Hayman, The v-sea oncogene of avian erythroblastosis retrovirus S 13: another member of the protein-tyrosine kinase gene family, Proc. Nail. Acad. Sci. U.S.A. 86:5291 (1989)CrossRefGoogle Scholar
  35. 23c.
    H. Matshshime, L.H. Wang, and M. Shibuya, Human c-ros-1 gene homologous to the \-ros sequence of UR2 sarcoma virus encodes for a transmembrane receptorlike molecule, Mol. Cell. Biol 6:3000 (1986).Google Scholar
  36. 24.
    C. Dickson, R. Deed, M. Dixon, and G. Peters, The structure and function of the int-2 oncogene, Prog. Growth Fact. Res. 1:123 (1989).CrossRefGoogle Scholar
  37. 25.
    M. Taira, T. Yoshida, K. Miyagawa, H. Sakamoto, M. Terada, and T. Sugimura, cDNA sequence of human transforming gene hst and identification of the coding sequence required for transforming activity, Proc. Natl. Acad. Sci. USA. 84:2980 (1987)PubMedCrossRefGoogle Scholar
  38. 25a.
    P. Delli Bovi, A.M. Curatola, F.G. Kern, A. Greco, M. Ittmann, and C. Basilico, An oncogene isolated by transfection of Kaposi’s sarcoma DNA encodes a growth factor that is a member of the FGF family, Cell 50:729 (1987)CrossRefGoogle Scholar
  39. 25b.
    X. Zhan, B. Bates, X.G. Hu, and M. Goldfarb, The human FGF-5 oncogene encodes a novel protein related to fibroblast growth factors, Mol. Cell. Biol. 8:3487 (1988)PubMedGoogle Scholar
  40. 25c.
    A.L. Schechter, D.F. Stern, L. Vaidyanathan, S.J. Decker, J.A. Drebin, M.I. Greene, and R.A. Weinberg, The neu oncogene: an erbB-related gene encoding a 185,000-Mr tumour antigen, Nature 312:513 (1984)PubMedCrossRefGoogle Scholar
  41. 25d.
    M. Dean, M. Park, M.M. Le Beau, T.S. Robins, M.O. Diaz, J.D. Rowley, D.G. Blair, and G.F. Vande Woude, The human met oncogene is related to the tyrosine kinase oncogenes, ibid. 318:385 (1985)Google Scholar
  42. 25e.
    D. Martin-Zanca, S.H. Hughes, and M. Barbacid, A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences, ibid. 319:743 (1986)Google Scholar
  43. 25f.
    M. Takahashi and G.M. Cooper, ret transforming gene encodes a fusion protein homologous to tyrosine kinases, Mol. Cell Biol 7:1378 (1987).PubMedGoogle Scholar
  44. 26.
    M. Shibuya, S. Yamaguchi, A. Yamane, T. Ikeda, A. Tojo, H. Matsushime, and M. Sato, Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family, Oncogene 5:519 (1990)PubMedGoogle Scholar
  45. 26a.
    T. Matsui, M.A. Heidaran, T. Miki, N. Popescu, W.J. LaRochelle, M.H. Kraus, J.H. Pierce, and S.A. Aaronson, Isolation of anovel receptor cDNA establishes the existence of two PDGF receptor genes, Science 243:800 (1989)PubMedCrossRefGoogle Scholar
  46. 26b.
    C.R. King, M.H. Kraus, and S.A. Aaronson, Amplification of a novel v-erbB-related gene in a human mammary carcinoma, ibid 229:974 (1985)Google Scholar
  47. 26c.
    K. Semba, N. Kamata, K. Toyoshima, and T. Yamamoto, A v-eròB-related protooncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma, Proc. Natl. Acad. Sci. U.S.A. 82:6497 (1985)PubMedCrossRefGoogle Scholar
  48. 26d.
    P.L. Lee, D.E. Johnson, L.S. Cousens, V.A. Fried, and L.T. Williams, Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor, Science 245:57 (1989)PubMedCrossRefGoogle Scholar
  49. 26e.
    E.B. Pasquale and S.J. Singer, Identification of a developmentally regulated protein-tyrosine kinase by using anti-phosphotyrosine antibodies to screen a cDNA expression library, Proc. Natl. Acad. Sci. U.S.A. 86:5449 (1989)PubMedCrossRefGoogle Scholar
  50. 26f.
    M. Ruta, R. Howk, G. Ricca, W. Drohan, M. Zabelshansky, G. Laureys, D.E. Barton, U. Francke, J. Schlessinger, and D. Givol, A novel protein tyrosine kinase gene whose expression is modulated during endothelial cell differentiation, Oncogene3:9 (1988)Google Scholar
  51. 26g.
    Y. Hattori,H. Odagiri,H. Nakatani, K. Miyagawa, K. Naito, H. Sakamoto, O. Katoh, T. Yoshida, T. Sugimura, and M. Terada, K-sam, an amplified gene in stomach cancer, is a member of the heparin-binding growth factor receptor genes, Proc. Natl. Acad. Sci. USA. 87:5983 (1990)PubMedCrossRefGoogle Scholar
  52. 26h.
    S. Kombluth, K.E. Paulson, and H. Hanafusa, Novel tyrosine kinase identified by phosphotyrosine antibody screening of cDNA libraries, Mol. Cell. Biol. 8:5541 (1988)Google Scholar
  53. 26i.
    E.B. Pasquale, A distinctive family of embryonic protein-tyrosine kinase receptors, Proc. Natl. Acad. Sci. U.S.A. 87:5812 (1990)PubMedCrossRefGoogle Scholar
  54. 26j.
    T. Miki, T.P. Fleming, D.P. Bottaro, J.S. Rubin, D. Ron, and S.A. Aaronson, Expression cDNA cloning of the KGF receptor by creation of a transforming autocrine loop, Science 251:72 (1991)PubMedCrossRefGoogle Scholar
  55. 26k.
    J. Partanen, T.P. Makela, E. Eerola, J. Korhonen, H. Hirvonen, L. Claesson-Welsh, and K. Alitalo, FGFR-4, a novel acidic fibroblast growth factor receptor with a distinct expression pattern, EMBO J. 10:1347 (1991)PubMedGoogle Scholar
  56. 26.l.
    26l. K. Keegan, D.E. Johnson, L.T. Williams, and M.J. Hayman, Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3, Proc. Natl. Acad. Sci. U.SA. 88:3701 (1989)Google Scholar
  57. 26m.
    R. Klein, L.F. Parada, F. Coulier, and M. Barbacid, trkB, a novel tyrosine protein kinase receptor expressed during mouse neural development, EMBO J. 8:3701 (1989)PubMedGoogle Scholar
  58. 26n.
    H. Hirai, Y. Maru, K. Hagiwara, J. Nishida, and F. Takaku, A novel putative tyrosine kinase receptor encoded by the eph gene, Science 238:1717 (1987)PubMedCrossRefGoogle Scholar
  59. 26o.
    V. Lhotäk, P. Greer, K. Letwin, and T. Pawson, Characterization of elk, a grain-specific receptor tyrosine kinase, Mol. Cell. Biol. 11:2496 (1991)PubMedGoogle Scholar
  60. 26p.
    R.A. Lindberg and T. Hunter, cDNA cloning and characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the eph/elk family of protein kinases, ibid 10:6316 (1990).Google Scholar
  61. 27.
    M.H. Kraus, W. Issing, T. Miki, N.C. Popescu, and S.A. Aaronson, Isolation and characterization of erbB~3 ,a third member of the erbB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors, Proc. Natl. Acad. Sci. U.SA. 86:9193 (1989).CrossRefGoogle Scholar
  62. 28.
    A. Ullrich, J.R. Bell, E.Y. Chen, R. Herrera, L.M. Petruzzelli, T.J. Dull, A. Gray, L. Coussens, Y.C. Liao, and M. Tsubokawa, Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes, Nature 313:756 (1987)CrossRefGoogle Scholar
  63. 28a.
    Y. Yarden, J.A. Escobedo, W.J. Kuang, T.L. Yang-Feng, T.O. Daniel, P.M. Tremble, E.Y. Chen, M.E. Ando, R.N. Harkins, and U. Francke, Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors, ibid 323:226 (1986)Google Scholar
  64. 28b.
    A. Ullrich, A. Gray, A.W. Tarn, T. Yang-Feng, M. Tsubokawa, C. Collins, W. Henzel, T. Le Bon, S. Kathuria, and E. Chen, Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity, EMBO J. 5:2503 (1986).PubMedGoogle Scholar
  65. 29.
    S.A. Aaronson and S.R. Tronick, Growth factors, in: Cancer Medicine, J.F. Holland III, R.C.. Bast Jr.,D.W. Kufe, D.L. Morton, eds., Lea &Febiger, Philadelphia (1991)Google Scholar
  66. 30.
    D.P. Bottaro, J.S. Rubin, D.L. Faletto, A.M.-L. Chan, T.E. Kmiecik, G.F. Vande Woude, and S.A.Aaronson, Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product, Science 251:802 (1991)PubMedCrossRefGoogle Scholar
  67. 30a.
    L. Naldini, E. Vigna, R.P. Narsimhan, G. Gaudino, R. Zarnegar, G.K. Michalopoulos, and P.M. Comoglio, Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET, Oncogene 6:501 (1991).PubMedGoogle Scholar
  68. 31.
    B.L. Hempstead, D. Martin-Zanca, D.R. Kaplan, L.R Parada, M.V. Chao, High affinity NGF binding requires coexpression of the trk proto-oncogene and the low affinity NGF receptor, Nature 350:678 (1991)PubMedCrossRefGoogle Scholar
  69. 31a.
    A.R. Nehreda, D. Martin-Zanca, D.R. Kaplan, L.F. Parada, and E. Santos, Induction by NGF of meiotic maturation of Xenopus oocytes expressing the trk proto-oncogene product, Science 252:558 (1991)CrossRefGoogle Scholar
  70. 31b.
    R. Klein, S.Q. Jing, V. Nanduri, E. O’Rourke, and M. Barbacid, The trk proto-oncogene encodes a receptor for nerve growth factor, Cell65:189 (1991).PubMedCrossRefGoogle Scholar
  71. 32.
    D. Soppet, E. Escandon, J. Maragos, D.S. Middlemas, S.W. Reid, J. Blair, L.E. Burton, B.R. Stanton, D.R. Kaplan, and T. Hunter, The neurotrophic factors, brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor, Cell 65:895 (1991).PubMedCrossRefGoogle Scholar
  72. 33.
    J. Meisenhelder, P.-G. Suh, S.G. Rhee, and T. Hunter, Phospholipase C-gamma is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro, Cell 57:1109 (1989)PubMedCrossRefGoogle Scholar
  73. 33a.
    M.I. Wahl, N.E. Olashaw, S. Nishibe, S.G. Rhee, W.J. Pledger, and G. Carpenter, Platelet-derived growth factor induces rapid and sustained tyrosine phosphorylation of phospholipase C-gamma in quiescent BALB/c 3T3 cells, Mol. Cell. Biol. 9:2934 (1989).PubMedGoogle Scholar
  74. 34.
    D.R. Kaplan, M. Whitman, B. Schaffhausen, D.C. Pallas, M. White, L. Cantley, and T.M. Roberts, Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity, Cell 50:1021 (1987).PubMedCrossRefGoogle Scholar
  75. 35.
    C.J. Molloy, D.P. Bottaro, T.P. Fleming, M.S. Marshall, J.B. Gibbs, and S.A. Aaronson, PDGF induction of tyrosine phosphorylation of GTPase activating protein, Nature 342:711 (1989)PubMedCrossRefGoogle Scholar
  76. 35a.
    D.R. Kaplan, D.K. Morrison, G. Wong, F. McCormick, and L.T. Williams, PDGF beta-receptor stimulates tyrosine phosphorylation of GAP and association of GAP with a signaling complex, Cell 61:125 (1990)PubMedCrossRefGoogle Scholar
  77. 35b.
    A. Kazlauskas, C. Ellis, T. Pawson, J.A. Cooper, Binding of GAP to activated PDGF receptors, Science 247:1578 (1990).PubMedCrossRefGoogle Scholar
  78. 36.
    R. Ralston and J.M. Bishop, The product of the protooncogene c-src is modified during the cellular response to platelet-derived growth factor, Proc. Natl. Acad. Sci. U.SA. 82:7845 (1985)CrossRefGoogle Scholar
  79. 36a.
    R.M. Kypta, Y. Goldberg, E.T. Ulug, and S.A. Courtneidge, Association between the PDGF receptor and members of the src family of tyrosine kinases, Cell 62:481 (1990).PubMedCrossRefGoogle Scholar
  80. 37.
    D.K. Morrison, D.R. Kaplan, U.R. Rapp, and T.M. Roberts, Signal transduction from membrane to cytoplasm: growth factors and membrane-bound oncogene products increase Raf-1 phosphorylation and associated protein kinase activity, Proc. Natl. Acad. Sci. U.S.A. 85:8855 (1988)PubMedCrossRefGoogle Scholar
  81. 37a.
    D.K. Morrison, D.R. Kaplan, J.A. Escobedo, U.R. Rapp, T.M. Roberts, and L.T. Williams, Direct activation of the serine/threonine kinase activity of Raf-1 through tyrosine phosphorylation by the PDSGF beta receptor, Cell 58:649 (1989).PubMedCrossRefGoogle Scholar
  82. 38.
    A. Berridge and R.F. Irvine, Inositol phosphates and cell signaling, Nature 341:197 (1989)PubMedCrossRefGoogle Scholar
  83. 38a.
    U. Kikkawa, A. Kishimoto, and Y. Nishizuka, The protein kinase C family: heterogeneity and its implications, Annu. Rev. Biochem. 58:31 (1989).PubMedCrossRefGoogle Scholar
  84. 39.
    S. Nishibe, M.I. Wahl, S.M. Hernandez-Sotomayor, N.K. Tonks, S.G. Rhee, and G. Carpenter, Increase of the catalytic activity of phospholipase C-gamma 1 by tyrosine phosphorylation, Science 250:1253 (1990)PubMedCrossRefGoogle Scholar
  85. 39a.
    P.J. Goldschmidt-Clermont, J.W. Kim, L.M. Machesky, S.G. Rhee, and T.D. Pollard, Regulation of phospholipase C-gamma 1 by profilin and tyrosine phosphorylation, ibid. 251:1231 (1991).Google Scholar
  86. 40.
    FL.C. Cantley, K.R. Auger, C. Carpenter, B. Duckworth, A. Graziani, R. Kapeller, and S. Soltoff,Oncogenes and signal transduction, Cell 64:281 (1991).PubMedCrossRefGoogle Scholar
  87. 41.
    J.A. Escobedo, S. Navankasattusas, W.M. Kavanaugh, D. Milfay, V.A. Fried, and L.T. Williams, cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF beta receptor, Cell 65:75 (1991)PubMedCrossRefGoogle Scholar
  88. 41a.
    E.Y. Skolnik, B. Margolis, M. Mohammadi, E. Lowenstein, R. Fischer, A. Drepps, A. Ullrich, and J. Schlessinger, Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases, ibid. 65:83 (1991)Google Scholar
  89. 41b.
    M. Otsu, I. Hiles, I. Gout, M.J. Fry, F. Ruiz-Larrea, G. Panayotou, A. Thompson, R. Dhand, J. Hsuan, and N. Totty, Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase, ibid. 65:91 (1991).Google Scholar
  90. 42.
    M. Whitman, D.R. Kaplan, B. Schaffransen, L. Cantley, and T.M. Roberts, Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation, Nature 315:239 (1985)PubMedCrossRefGoogle Scholar
  91. 42a.
    D.R. Kaplan, M. Whitman, B. Schaffhausen, L. Raptis, R.L. Garcea, D. Pallas, T.M. Roberts, and L. Cantley, Phosphatidylinositol metabolism and polyoma-mediated transformation, Proc. Natl. Acad. Sci. U.S.A. 83:3624 (1986)PubMedCrossRefGoogle Scholar
  92. 42b.
    S.A. Courtneidge and A. Heber, An 81 kd protein complexed with middle T antigen and pp60c-src: a possible phosphatidylinositol kinase, Cell 50:1031(1987).PubMedCrossRefGoogle Scholar
  93. 43.
    Y. Fukui and H. Hanafusa, Phosphatidylinositol kinase activity associates with viral p60src protein, Mol Cell Biol. 9:1651 (1989)PubMedGoogle Scholar
  94. 43a.
    L. Varticovski, Q. Daley, P. Jackson, D. Baltimore, and L.C. Cantley, Activation of phosphatidylinositol 3-kinase in cells expressing abl oncogene variants, ibid. 11:1107 (1991).Google Scholar
  95. 44.
    F. McCormick, ras GTPase activating protein: signal transmitter and signal terminator, Cell 56:5 (1989).PubMedCrossRefGoogle Scholar
  96. 45.
    M. Barbacid, ras genes, Annu. Rev. Biochem. 56:779 (1987).PubMedCrossRefGoogle Scholar
  97. 46.
    D.W. Stacey and H.F. Kung, Transformation of NIH 3T3 cells by microinjection of Ha-ras p21 protein,Nature 310:508 (1984).PubMedCrossRefGoogle Scholar
  98. 47.
    K. Zhang, J.E. DeClue, W.C. Vass, A.G. Papageorge, F. MeCormick, and D.R. Lowy, Suppression of C-ras transformation by GTPase-activating protein, Nature 346:754 (1990)PubMedCrossRefGoogle Scholar
  99. 47a.
    K. Tanaka, K. Matsumoto, and E.A. Toh, IRA 1, an inhibitory regulator of the RAS-cyclic AMP pathway in Saccharomyces cerevisiae, Mol. Cell. Biol. 9:757 (1989)PubMedGoogle Scholar
  100. 47b.
    R. Ballester, T. Michaeli, K. Ferguson, H.P. Xu, F. McCormick, and M. Wigler, Genetic analysis of mammalian GAP expressed in yeast, Cell 59:681 (1989).PubMedCrossRefGoogle Scholar
  101. 48.
    A. Yatani, KOkabe, P. Polakis, R. Halenbeck, F. McCormick, and A.M. Brown, ras p21 and GAP inhibit coupling of muscarinic receptors to atrial K+ channels, Cell61:169 (1990).CrossRefGoogle Scholar
  102. 49.
    A.H. Bouton, S.B. Kanner, R.R. Vines, H.C. Wang, J.B. Gibbs, and J.T. Parsons, Transformation by pp60src or stimulation of cells with epidermal growth factor induces the stable association of tyrosine-phosphorylated cellular proteins with GTPase-activating protein, Mol. Cell. Biol. 11:945 (1991).PubMedGoogle Scholar
  103. 50.
    M.F. Moran, P. Polakis, F. McCormick, T. Pawson, and C. Ellis, Protein-tyrosine kinases regulate the phosphorylation, protein interactions, subcellular distribution and activity of p21ras GTPase-activating protein, Mol. Cell. Biol. 11:1807 (1991).Google Scholar
  104. 51.
    T. Satoh, M. Endo, M. Nakafuku, S. Nakamura, Y. Kasiro, Platelet-derived growth factor stimulates formation of active p21ras GTP complex in Swiss mouse 3T3 cells, Proc. Natl. Acad. Sci. U.S.A. 87:5903 (1991)Google Scholar
  105. 51a.
    J.B. Gibbs, M.S. Marshall, E.M. Scolnik, R.A. Dixon, and U.S. Vogel, Modulation of guanine nucleotides bound to Ras in NIH3T3 cells by oncogenes, growth factors and the GTPase activating protein (GAP), J. Biol. Chem. 265:20437 (1990).PubMedGoogle Scholar
  106. 52.
    S. Powers, E. Gonzales, T. Christensen, J. Cubert, and D. Broek, Functional cloning of BUD5, a CDC25-related gene from S. cerevisiae that can suppress a dominant-negative RAS2 mutant, Cell 65:12125 (1991)CrossRefGoogle Scholar
  107. 52a.
    J. Chant, K. Corrado, J. Pringle, and I. Herskowitz, Yeast BUD5, encoding a putative GDP-GTP exchange factor, is necessary for bud site selection and interacts with bud formation gene BEM1, ibid. 65:1231 (1991)Google Scholar
  108. 52b.
    S. Jones, M.L. Vignais, and J.R. Broach, The CDC25 protein of Saccharomyces cerevisiae promotes exchange of guanine nucleotides bound to ras, Mol. Cell. Biol. 11:2641(1991).PubMedGoogle Scholar
  109. 53.
    Y.K. Huang, H.F. Kung, T. Kamata, Purification of a factor capable of stimulating the guanine nucleotide exchange reaction of ras proteins and its effect on ras-related small molecular mass G proteins, Proc. Natl. Acad. Sci. U.SA. 87:8008 (1990)CrossRefGoogle Scholar
  110. 53a.
    A. Wolfman and I.G. Macara, A cytosolic protein catalyzes the release of GDP from p21ras, Science 248:67 (1990)PubMedCrossRefGoogle Scholar
  111. 53b.
    J. Downward, R. Riehl, L. Wu, and R.A. Weinberg, Identification of a nucleotide exchange-promoting activity for p21ras, Proc. Natl. Acad. Sci. U.S.A. 87:5998 (1990).PubMedCrossRefGoogle Scholar
  112. 54.
    J.A. Cooper, The SRC family of protein tyrosine kinasesw: Peptides and Protein Phosphorylation, B. Kenpard and P.F. Alewood, eds. CRC Press, Inc., Boca Raton, (1990).Google Scholar
  113. 55.
    U.R. Rapp, G. Heidecker, M. Huleihel, J.L. Cleveland, W.C. Choi, T. Pawson, J.N. Ihle, and W.B. Anderson, raf family serine/threonine protein kinases in mitogen signal transduction, Cold Spring Harbor Symposium Quant. Biol. 53:173 (1988).CrossRefGoogle Scholar
  114. 56.
    P. Li, K. Wood, H. Mamon, W. Haser, and T. Roberts, Raf-1: a kinase currently without a cause but not lacking in effects, Cell 64:479 (1991).PubMedCrossRefGoogle Scholar
  115. 57.
    J.P. Falco, W.G. Taylor, P.P. Di Fiore, B.E. Weissman, and S.A. Aaronson, Interactions of growth factors and retroviral oncogenes with mitogenic signal transduction pathways of Balb/MK keratinocytes, Oncogene 2:573 (1988).PubMedGoogle Scholar
  116. 58.
    A. Balmain and I.B. Pragnell, Mouse skin carcinomas induced in vivo by chemical carcinogens have a transformingHarvey-rayoncogene,Nature303:12 (1983)CrossRefGoogle Scholar
  117. 58a.
    B. Bailleul, M.A. Surani, S. White, S.C. Barton, K. Brown, M. Blessing, J. Jorcano, and A. Balmain, Skin hyperkeratosis and papilloma formation in transgenic mice expressing a ras oncogene from a suprabasal keratin promoter, Cell 62:697 (1990).PubMedCrossRefGoogle Scholar
  118. 59.
    S. Alema, P. Cassalbore, E. Agostini, F. Tabo, Differentiation of PC12 phaeochromocytoma cells induced by v-src oncogene, Nature 316:557 (1985)PubMedCrossRefGoogle Scholar
  119. 59a.
    M. Noda, M. Ko, A. Ogura, D.G. Liu, T. Amano, T. Takano, and Y. Ikawa, Sarcoma viruses carrying ras oncogenes induce differentiation-associated properties in a neuronal cell line, ibid. 318:73 (1985)Google Scholar
  120. 59b.
    I. Guerrero, H. Wong, A. Pellicer, and D.E. Burstein, Activated N-ras gene induces neuronal differentiation of PC 12 rat pheochromocytoma cells, J. CellPhysiol. 129:71 (1986).CrossRefGoogle Scholar
  121. 60.
    S. Seremetis, G. Inghirami, D. Ferrero, D.W. Newcomb, D.M. Knowles, G.P. Dotto, and R. Dalla-Favera, Transformation and plasmacytoid differentiation of EBV-infected human B lymphoblasts by ras oncogenes, Science 243:660 (1989).PubMedCrossRefGoogle Scholar
  122. 61.
    D. Cosman, S.D. Lyman, R.L. Idzerda, M.P. Beckmann, L.S. Park, R.G. Goodwin, and C.J. March, A new cytokine receptor superfamily, Trends Biochem. Sci. 15:265 (1990).PubMedCrossRefGoogle Scholar
  123. 62.
    M. Tsudo, R.W. Kozak, C.K. Goldman, and J.A. Waldmann, Demonstration of a non-Tac peptide that binds interleukin 2: a potential participant in a multichain interleukin 2 receptor complex, Proc. Natl. Acad. Sci. U.S.A. 84:9694 (1986)CrossRefGoogle Scholar
  124. 62a.
    M. Hibi, M. Murakami, M. Saito, T. Hirano, T. Taga, and T. Kishimoto, Molecular Cloning and expression of an IL-6 signal transducer, gp130, Cell 63:1149 (1990).PubMedCrossRefGoogle Scholar
  125. 63.
    A. Morla, J. Schreur, A. Miyajama, J. Wang, Mol. Cell. Biol. 8:2214 (1988)PubMedGoogle Scholar
  126. 63a.
    Y. Konakura et al Blood 76:706 (1990)Google Scholar
  127. 63b.
    R. Isfort, R. Hunn, R. Frackelton, and J. Ihle, J. Biol. Chem. 263:19203 (1988).PubMedGoogle Scholar
  128. 64.
    T. Satoh, M. Nakafuku, A. Miyajima, Y. Kaziro, Involvement of ras p21 protein in signal transduction pathways from interleukin 2, interleukin 3, and granulocyte/macrophage colony-stimulating factor, but not from interleukin 4, Proc. Natl. Acad. Sci. U.S.A. 88:3314 (1991).PubMedCrossRefGoogle Scholar
  129. 65.
    M. Hatakeyama, T. Kono, N. Kobayashi, A. Kawahara, S.D. Levin, R.M. Perlmutter, and T. Taniguchi, Interaction of the IL-2 receptor with the src-family kinase p561ck: identification of novel intermolecular association, Science 252:1523 (1991).PubMedCrossRefGoogle Scholar
  130. 66.
    A. Yoshinura, G. Longmore, and H. Lodish, Point mutation in the exoplasmic domain of the erythropoietin receptor resulting in hormone-independent activation and tumorigenicity, Nature 348:647 (1990).CrossRefGoogle Scholar
  131. 67.
    S.K. Ruscetti, N. Janesch, A. Chakroborti, S.T. Sawyer, and W.D. Hankins, Friend spleen focus-forming virus induces factor independence in an erythropoietin-dependent erythroleukemia cell line, J. Virol. 63:1057 (1990)Google Scholar
  132. 67a.
    J.P. Li, A. D’Andrea, H. Lodish, and D. Baltimore, Activation of cell growth by binding of Friend spleen focus-forming virus gp55 glycoprotein to the erythropoietin receptor, Nature 343:762 (1990).PubMedCrossRefGoogle Scholar
  133. 68.
    F. Wong-Staal and R. Gallo, Human T-lymphotropic retroviruses, Nature 317:395 (1985).PubMedCrossRefGoogle Scholar
  134. 69.
    H.R. Bourne and A.L. DeFranco, Signal transduction and intracellular messengers in: Oncogenes and the Molecular Origins of Cancer, R.E. Weinberg, ed. Cold Spring Harbor Laboratory, Cold Spring Harbor (1989).Google Scholar
  135. 70.
    K.R. Stratton, P.F. Worley, R.L. Huganir, and J.M. Baraban, Muscarinic agonists and phorbol esters increase tyrosine phosphorylation of a 40-kilodalton protein in hippocampal slices, Proc. Natl. Acad. Sci. U.S.A. 86:2498 (1989)PubMedCrossRefGoogle Scholar
  136. 70a.
    J. Zachaiy, J. Gil, W. Lehman, and J. Sinnett-Smith, Bombesin, vasopressin and endothelin rapidly stimulate tyrosine phosphorylation in intact Swiss 3T3 cells, ibid. 88:4577 (1991)Google Scholar
  137. 70b.
    T. Force, J.M. Kyriakis, J. Avruch, and J.V. Bonventre, Endothelin, vasopressin and angiotensin II enhance tyrosine phosphorylation by protein kinase C-dependent and -independent pathways in glomerular mesangial cells, J. Biol. Chem. 266:6650 (1991)PubMedGoogle Scholar
  138. 70c.
    L.M.T. Leeb-Lundberg and S.-H. Song, Bradykinin and bombesin rapidly stimulate tyrosine phosphorylation of a 120-kDa group of proteins in Swiss 3T3 cells, ibid. 266:7746 (1991)Google Scholar
  139. 70d.
    S.J. Shattil and J.S. Brugge, Protein tyrosine phosphorylation and the adhesive functions of platelets, Curr. Opin. Cell Biol. 3:869 (1991).PubMedCrossRefGoogle Scholar
  140. 71.
    B.F. O’Dowd, R.J. Lefkowitz, and M.G. Caron, Structure of the adrenergic and related receptors, Annu. Rev. Neurosci. 12:67 (1989)PubMedCrossRefGoogle Scholar
  141. 71a.
    J. Ramachandran, E.G. Peralta, A. Ashkenazi, J.W. Winslow, and D.J. Capon, The structural and functional interrelationships of muscarinic acetylcholine receptor subtypes, Bioessays 10:54 (1989)PubMedCrossRefGoogle Scholar
  142. 71b.
    H.Y. Lin, E.H. Kaji G.K. Winkel, H.E. Ives, and H.F. Lodish, Cloning and functional expression of a vascular smooth muscle endothelin 1 receptor, Proc. Natl. Acad. Sci. U.S.A. 88:3185 (1991).PubMedCrossRefGoogle Scholar
  143. 72.
    T.R. Jackson, L.A. Blair, J. Marshall, M. Goedert, and M.R. Hanley, The mas oncogene encodes an angiotensin receptor, Nature 335:440 (1988).CrossRefGoogle Scholar
  144. 73.
    D. Julius, T.J. Livelli, T.M. Jessell, and R. Axel, Ectopic expression of the serotonin 1c receptor and the triggering of malignant transformation, Science 244:1057 (1989).PubMedCrossRefGoogle Scholar
  145. 74.
    F. Cuttitta, D.N. Carney, J. Mulshine, T.W. Moody, J. Fedorko, A. Fischler, and J.D. Minna, Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer, Nature 316:823(1985).PubMedCrossRefGoogle Scholar
  146. 75.
    J.L. Mulshine, I. Avis, A.M. Treston, C. Mobley, P. Kaspryzyk, J.A. Carrasquillo, S.M. Larson, Y.Nakanishi, B. Merchant, and J.D. Minna, Clinical use of a monoclonal antibody to bombesin-like peptide in patients with lung cancer, Ann. N.Y. Acad. Sci. 547:360 (1988).PubMedCrossRefGoogle Scholar
  147. 76.
    C.A. Landis, S.B. Masters, A. Spada, A.M. Pace, H.R. Bourne, and L. Vallar, GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours, Nature 340:692 (1989)PubMedCrossRefGoogle Scholar
  148. 76a.
    J. Lyons, C.A. Landis, G. Harsh, L. Vallar, K. Gruenwald, H. Feichtinger, Q. Y. Dun, O.H. Clark, E. Kawasaki, and H.R. Bourne, Two G protein oncogenes in human endocrine tumors, Science 249:655 (1990).PubMedCrossRefGoogle Scholar
  149. 77.
    J.S. Gutkind, E.A. Novotny, M.R. Brann, and K.C. Robbins, Muscarinic acetylcholine receptor subtypes as agonist-dependent oncogenes, Proc. Natl. Acad. Sci. U.S.A. 88:4703 (1991).PubMedCrossRefGoogle Scholar
  150. 78.
    T. Mild, T.P. Fleming, M. Crescenzi, C.J. Molloy, S.B. Blam, S.H. Reynolds, and S.A. Aaronson,Development of a highly efficient expression cDNA cloning system: application to oncogene isolation, Proc. Natl Acad. Sci. U.S.A. 88:5167 (1991).CrossRefGoogle Scholar
  151. 79.
    M.P. Strathmann and M.I. Simon, Gal2 and Ga13 subunits define a fourth class of G protein a subunits,Proc. Natl. Acad. Sci. U.SA. 88:5582 (1991).CrossRefGoogle Scholar
  152. 80.
    A.M.-L. Chan, T.P. Fleming, E.S. McGovern, M. Checdid, T. Miki, and S.A. Aaronson, Expression cDNA cloning of a transforming gene encoding the wild-type Gal2 gene product, Mol. Cell. Biol. 13:762 (1993).PubMedGoogle Scholar
  153. 81.
    T. Miki, D.P. Bottaro, T.P. Fleming, C.L. Smith, W.H. Burgess, A.M.-L. Chan, and S.A. Aaronson,Determination of ligand-binding specificity by alternative splicing: two distinct growth factor receptors encoded by a single gene, Proc. Natl. Acad. Sci. U.S.A. 89:246 (1992).PubMedCrossRefGoogle Scholar
  154. 82.
    E. Solomon, J. Borrow, and A.D. Goddard, Chromosome aberrations and cancer, Science 254:1153 (1991).PubMedCrossRefGoogle Scholar
  155. 83.
    R.A. Weinberg, Tumor suppressor genes, Science 254:1138 (1991).PubMedCrossRefGoogle Scholar
  156. 84.
    C. Shih, B.-Z. Shilo, M.P. Goldfarb, A. Dannenberg, and R.A. Weinberg, Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin, Proc. Natl. Acad. Sci. U.SA. 76:5714(1979).CrossRefGoogle Scholar
  157. 85.
    A.M.-L. Chan, unpublished observations.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Stuart A. Aaronson
    • 1
  • Toru Miki
    • 1
  • Kimberly Meyers
    • 1
  • Andrew Chan
    • 1
  1. 1.Laboratory of Cellular and Molecular BiologyNational Cancer InstituteBethesdaUSA

Personalised recommendations