The Quark-Gluon Plasma: Search for The Holy Grail

  • Peter A. Carruthers
Part of the NATO ASI Series book series (NSSB, volume 303)


As everybody knows, the first step in the solution of a physics problem is to find the best set of variables. In particle physics these are often imagined to be quantized fields subject to various symmetry requirements. In QED one finds that photons and electrons suffice with little attention to other types of interactions. The edifices of chemistry and condensed matter physics are largely built out of QED using electrons and ions. In this case the most economical description is in terms of collective variables known as quasiparticles. The original coordinates: electrons and ions, are clumsy in comparison with the quasiparticles (for example, phonons, plasmons and almost free electrons in a metal).


Quark Matter Mass Shell Inclusive Cross Section Nuclear Collision High Energy Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Carruthers, Nucl. Phys. A418, 501 (1984).Google Scholar
  2. 2.
    E. Fermi, Progr. Theoret. Phys. (Kyoto) 5, 570 (1950); Phys. Rev. 81, 683 (1951).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    L. D. Landau and Landau and S. Z. Bilenkij, in Collected Papers of L. D. Landau, ed. D. Ter Haar, Gordon and Breach, New York (1965)Google Scholar
  4. 4.
    W. Heisenberg, Z. Physik 133, 65 (1952).ADSMATHGoogle Scholar
  5. 5.
    G. A. Milekhin J. Exptl. Theoret. Phys. (SSSR) 35, 1185 (1959).MathSciNetGoogle Scholar
  6. 6.
    H. A. Bethe, B. H. Brandow and A. G. Petschek, Phys Rev. 129, 225 (1963)ADSMATHCrossRefGoogle Scholar
  7. 7.
    P. Carruthers, Collective Phenomena 1, 147 (1973).Google Scholar
  8. 8.
    R. Hagedorn, Quark Matter ′84, Springer-Verlag, ed. K. Kajantie.Google Scholar
  9. 9.
    L. Sertorio, La Rivista del Nuovo Cimento, 2, N. 2, p.1 (1979).CrossRefGoogle Scholar
  10. 10.
    P. Carruthers and Minh Duong-Van, Phys. Lett. B41, 597 (1972); (Phys. Rev. D8, 859 (1973).ADSGoogle Scholar
  11. 11.
    E. Shuryak, Phys. Repts. 61, 71 (1979).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    P. Carruthers, Annals of the New York Academy of Sciences 229, 91 (1974).ADSCrossRefGoogle Scholar
  13. 13.
    P. Carruthers and F. Zachariasen, Phys.Rev. D13, 950 (1976); Rev. Mod. Phys. 55, 245 (1983) and references.Google Scholar
  14. 14.
    P. Carruthers, Phys. Rev. Lett.50, 1179 (1983)Google Scholar
  15. 15.
    J. Engels, F. Karsch, I. Montvay and H. Satz, Phys. Lett. 101B, 89 (1981).ADSGoogle Scholar
  16. 16.
    B. Müller and J. Rafelski, Phys. Rev. Lett. 48, 1066 (1982).ADSCrossRefGoogle Scholar
  17. 17.
    M. Gell-Mann in “Proceedings of the 3rd Hawaii Topical Conference in Particle Physics,” Western Periodicals Co., N. Hollywood, (1970).Google Scholar
  18. 18.
    P. Carruthers, Phys. Repts. 1C, 1 (1972).MathSciNetADSGoogle Scholar
  19. 19.
    J. C. Collins, A. Duncan and S. D. Jogeklar, Phys. Rev. D16, 438 (1977).Google Scholar
  20. 20.
    P. Carruthers, Phys. Rev. D2, 2265 (1970).ADSGoogle Scholar
  21. 21.
    P. Carruthers, p. 513 in “The Nuclear Equation of State,” ed. W. Greiner and H. Stoecker, Plenum Press, NY, 1990.Google Scholar
  22. 22.
    P. Carruthers and F. Zachariasen, p. 698 AIP Conference Proceedings No. 123 “Intersections between Particle and Nuclear Physics,” ed. R. E. Mischke, American Institute of Physics, New York (1984) (Steamboat Springs, CO, 1984).Google Scholar
  23. 23.
    A. Bialas and R. Peschansky, Nucl. Phys. B273, 703 (1986).Google Scholar
  24. 24.
    G. W. Fowler and R. M. Weiner, Phys. Rev. D17, 3118 (1978).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Peter A. Carruthers
    • 1
  1. 1.Department of PhysicsUniversity of ArizonaTucsonUSA

Personalised recommendations