Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 303))

Abstract

Central nuclear collisions at energies far above 1 GeV/nucleon may provide for conditions, where the transition from highly excited hadronic matter into quark matter or quark-gluon plasma can be probed. Here I review our current understanding of the physical properties of a quark-gluon plasma and review ideas about the nature of, and signals for, the deconfinement transition. I also give a detailed presentation of recent progress in the treatment of the formation of a thermalized state at the parton level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Müller, The Physics of the Quark-Gluon Plasma, Lecture Notes in Physics, Vol. 225 (Springer-Verlag, Berlin-Heidelberg 1985).

    Google Scholar 

  2. L. McLerran, Rev. Mod. Phys. 58, 1021 (1986).

    ADS  Google Scholar 

  3. Quark-Gluon Plasma, edited by R. C. Hwa (World Scientific, Singapore, 1991)

    Google Scholar 

  4. For a recent review of cosmological implications of the quark-gluon phase transition, see: K. A. Olive, Science 251, 1194 (1991) and references therein.

    ADS  Google Scholar 

  5. See e.g.: E. W. Kolb and M. S. Turner, The Early Universe (Addison-Wesley, Redwood City, 1990), Chap. 3.5.

    MATH  Google Scholar 

  6. A. Guth, Phys. Rev. D23, 347 (1981).

    ADS  Google Scholar 

  7. L. F. Abbot and S. Y. Pi, Inflationary Cosmology, Reprint volume (World Scientific, Singapore, 1986).

    Google Scholar 

  8. J. Ellis, J. I. Kapusta, and K. A. Olive, Nucl. Phys. B348, 345 (1991).

    ADS  Google Scholar 

  9. N. K. Glendenning, Phys. Rev. Lett. 63, 2629 (1989).

    ADS  Google Scholar 

  10. R. Hagedorn, in: Quark Matter ′84, ed. by K. Kajantie, Lecture Notes in Physics Vol. 221, p. 53 (Springer-Verlag, Berlin-Heidelberg, 1985).

    Google Scholar 

  11. J. D. Walecka, Phys. Lett. 59B, 109 (1975); J. Theis, et al., Phys. Rev. D28, 2286 (1983).

    ADS  Google Scholar 

  12. J. Gasser and H. Leutwyler, Phys. Lett. 188B, 477 (1987).

    ADS  Google Scholar 

  13. P. Carruthers, Collective Phenomena, 1, 147 (1973).

    Google Scholar 

  14. J. C. Collins and M. Perry, Phys. Rev. Lett. 34, 1353 (1975).

    ADS  Google Scholar 

  15. G. Baym and S. A. Chin, Phys. Lett. 62B, 241 (1976); S. A. Chin, Phys. Lett. 78B, 552 (1978).

    ADS  Google Scholar 

  16. B. Friedman and L. McLerran, Phys. Rev. D17, 1109 (1978); L. D. McLerran, Phys. Rev. D24, 450 (1981).

    ADS  Google Scholar 

  17. E. V. Shuryak, Phys. Rep. 61, 71 (1980).

    MathSciNet  ADS  Google Scholar 

  18. R. Hagedorn, Suppl Nuovo Cimento 3, 147 (1965).

    Google Scholar 

  19. See e.g.: M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory, Vol. 1, chap. 2.3.5. (Cambridge University Press, Cambridge, 1987).

    MATH  Google Scholar 

  20. J. Kapusta, Phys. Rev. D23, 2444 (1981).

    ADS  Google Scholar 

  21. K. Sailer, B. Müller, and W. Greiner, Int. J. Mod. Phys. A4, 437 (1989).

    ADS  Google Scholar 

  22. N. Cabibbo and G. Parisi, Phys. Lett. 59B, 67 (1975).

    ADS  Google Scholar 

  23. R. Hagedorn and J. Rafelski, Phys. Lett. 97B, 136 (1980).

    ADS  Google Scholar 

  24. E. Shuryak, Nucl. Phys. A533, 761 (1991); E. Shuryak and V. Thorsson, Nucl. Phys. A536, 739 (1992).

    ADS  Google Scholar 

  25. C. Gong, J. Phys. B18, L123 (1992).

    ADS  Google Scholar 

  26. T. Abbott, et al. [E-802 Collaboration], Phys. Rev. Lett. 64, 847 (1990).

    ADS  Google Scholar 

  27. G. E. Brown and M. Rho, Phys. Rev. Lett. 66, 2720 (1991).

    ADS  Google Scholar 

  28. See e.g.: L. J. Reinders, H. R. Rubinstein, and S. Yazaki, Phys. Rep. 127, 1 (1985).

    ADS  Google Scholar 

  29. R. J. Furnstahl, T. Hatsuda, and S. H. Lee, Phys. Rev. D42, 1744 (1990).

    ADS  Google Scholar 

  30. G. Adami, T. Matsuda, and I. Zahed. Phys. Rev. D43, 921 (1991).

    ADS  Google Scholar 

  31. T. D. Cohen, R. J. Furnstahl, and D. K. Griegel, Phys. Rev. C45, 1881 (1992).

    ADS  Google Scholar 

  32. A. X. El-Khadra, G. Hockney, A. S. Kronfeld, and P. B. Mackenzie, Phys. Rev. Lett. 69, 729 (1992).

    ADS  Google Scholar 

  33. M. Creutz, Quarks, Gluons and Lattices (Cambridge University Press, Cambridge, 1983).

    Google Scholar 

  34. F. R. Brown, et al., Phys. Rev. Lett. 65, 2491 (1990); see also the lecture by F. Karsch at this School.

    ADS  Google Scholar 

  35. See e.g. the lecture by L. P. Csernai at this School.

    Google Scholar 

  36. E. Farhi and R. L. Jaffe, Phys. Rev. D30, 2379 (1984); I. Mardor and B. Svetitsky, Phys. Rev. D44, 878 (1991).

    ADS  Google Scholar 

  37. S. Huang, J. Potvin, C. Rebbi, and S. Sanielevici, Phys. Rev. D42, 2864 (1990); D43, 2056E (1991); K. Kajantie, L. Karkkainen, and K. Rummukainen, Nucl. Phys. B357, 693 (1991).

    ADS  Google Scholar 

  38. L. P. Csernai and J. I. Kapusta, preprint TPI-MINN-92-10-T, University of Minnesota, March 1991; Phys. Rev. Lett. 69, 737 (1992).

    Google Scholar 

  39. G. Lana and B. Svetitsky, Phys. Lett. B285, 251 (1992).

    ADS  Google Scholar 

  40. J. Potvin, Talk at the Workshop on QCD Vacuum Structure, Paris, June 1992 (to be published).

    Google Scholar 

  41. E. Witten, Phys. Rev. D30, 272 (1984).

    MathSciNet  ADS  Google Scholar 

  42. J. H. Applegate and C. J. Hogan, Phys. Rev. D31, 3037 (1985); D34, 1938 (1986); C. Alcock, G. M. Fuller, and G. J. Mathews, Astrophys. J. 320, 439 (1987).

    ADS  Google Scholar 

  43. M. Kurki-Suonio and R. Matzner, Phys. Rev. D39, 1046 (1989); Phys. Rev. D42, 1047 (1990); H. Kurki-Suonio, et al., Astrophys. J. 353, 406 (1990).

    ADS  Google Scholar 

  44. G. J. Mathews, B. Meyer, C. R. Alcock, and G. M. Füller, Astrophys. J. 358, 406 (1990).

    Google Scholar 

  45. A. Bodmer, Phys. Rev. D4, 1601 (1971); S. Chin and A. Kerman, Phys. Rev. Lett. 43, 1291 (1978); E. Farhi and R. Jaffe, Phys. Rev. D30, 2379 (1984).

    ADS  Google Scholar 

  46. H. Liu and G. Shaw, Phys. Rev. D30, 1137 (1984).

    ADS  Google Scholar 

  47. C. Greiner, P. Koch, and H. Stöcker, Phys. Rev. Lett. 58, 1825 (1987); Phys. Rev. D38, 2797 (1988).

    ADS  Google Scholar 

  48. C. Greiner, D. Rischke, H. Stöcker, and P. Koch, Z. Phys. C38, 283 (1988); C. Greiner and H. Stöcker, Phys. Rev. D44, 3517 (1991); G. Shaw, G. Benford, and D. Silverman, Phys. Lett. 169B, 275 (1986).

    ADS  Google Scholar 

  49. Brookhaven Experiments E814 (J. Barrette, et al., Phys. Lett. B252, 550 (1990)), E864 (J. Sandweis, et al.); E878 (H. J. Crawford, et al.); CERN-Experimental Proposal SPSLC/ P-268 (K. Pretzl, et al.).

    ADS  Google Scholar 

  50. G. Shaw, M. Shin, R. Dalitz, and M. Desai, Nature 337, 436 (1989); M. S. Desai and G. Shaw, Technological Implications of Strange Quark Matter, to appear in Nucl. Phys. B.

    ADS  Google Scholar 

  51. J. Kapusta, Nucl. Phys. B148, 461 (1979).

    ADS  Google Scholar 

  52. V P. Silin, Sov. Phys. JETP 11, 1136 (1960); V. V. Klimov, Sov. Phys. JETP 55, 199 (1982); H. A. Weldon, Phys. Rev. D26, 1394 (1982).

    MathSciNet  Google Scholar 

  53. A. Billoire, G. Lazarides, and Q. Shafi, Phys. Lett. 103B, 450 (1981); T. A. DeGrand and D. Toussaint, Phys. Rev. D25, 526 (1982). These authors find a coefficient C = 0.27± 0.03 for SU(2) gauge theory.

    ADS  Google Scholar 

  54. T. Matsui and H. Satz, Phys. Lett 178B, 416 (1986).

    ADS  Google Scholar 

  55. R. D. Pisarski, Phys. Rev. Lett. 63, 1129 (1989); E. Braaten and R. D. Pisarski; Phys. Rev. D42, 2156 (1990).

    ADS  Google Scholar 

  56. A. Ukawa, Nucl. Phys. A498, 227c (1989).

    ADS  Google Scholar 

  57. T. Biró, P. Levai, and B. Müller, Phys. Rev. D42, 3078 (1990).

    ADS  Google Scholar 

  58. M. H. Thoma, Phys. Lett. B269, 144 (1991); G. Baym, H. Monien, C. J. Pethick, and D. G. Ravenhall, Phys. Rev. Lett. 64, 1867 (1990).

    ADS  Google Scholar 

  59. E. Shuryak, Phys. Rev. Lett. 68, 3270 (1992).

    ADS  Google Scholar 

  60. A. B. Migdal, Sov. Phys. JETP 5, 527 (1957).

    MathSciNet  MATH  Google Scholar 

  61. A. H. Sørensen, Z. Phys. C53, 595 (1992); M. Gyulassy and X. N. Wang, to be published.

    ADS  Google Scholar 

  62. M. H. Thoma and M. Gyulassy, Nucl. Phys. B351, 491 (1991); E. Braaten and M. H. Thoma, Phys. Rev. D44, R2525 (1991).

    ADS  Google Scholar 

  63. S. Mrowczyriski, Phys. Lett. B269, 383 (1991).

    ADS  Google Scholar 

  64. N. S. Krylov, Works on the Foundation of Statistical Physics (Princeton University Press, Princeton, 1979); A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 119, 861 (1958) and 124, 754 (1959); Ya. G. Sinai, Dokl. Akad. Nauk SSSR 124, 768 (1959) and 125, 1200 (1959). See also: G. M. Zaslavsky, Chaos in Dynamic Systems (Harwood, Chur, 1985).

    Google Scholar 

  65. Gun He, Phys. Lett. A149, 95 (1990).

    ADS  Google Scholar 

  66. S. G. Matinyan, G. K. Savvidy, and N. G. Ter-Arutyunyan-Savvidy, Sov. Phys. JETP 53, 421 (1981); JETP Lett. 34, 590 (1981); See also: C. Gong, B. Müller, and A. Trayanov, preprint DUKE-TH-92-34 and references therein.

    Google Scholar 

  67. B. Müller and A. Trayanov, Phys. Rev. Lett. 68, 3387 (1992).

    ADS  Google Scholar 

  68. C. Gong, preprint DUKE-TH-92-41.

    Google Scholar 

  69. B. Anderson, G. Gustafson, G. Ingelman, and T. Sjöstrand, Phys. Rep. 97, 31 (1983).

    ADS  Google Scholar 

  70. B. Nilsson-Almquist and E. Stenlund, Comp. Phys. Comm. 43, 387 (1987).

    ADS  Google Scholar 

  71. M. Gyulassy, preprint CERN-TH-4784 (1987, unpublished).

    Google Scholar 

  72. T. Csőrgő, J. Zimányi, J. Bondorf, and H. Heiselberg, Phys. Lett. B222, 115 (1989).

    ADS  Google Scholar 

  73. K. Werner, Z. Phys. C42, 85 (1989).

    Google Scholar 

  74. N. S. Amelin, K. K. Gudima, and V. D. Toneev, Yad. Fiz. 51, 512 (1990).

    Google Scholar 

  75. M. Sorge, H. Stöcker, and W. Greiner, Nucl. Phys. A498, 567c (1989); Ann. Phys. 192, 266 (1989).

    ADS  Google Scholar 

  76. T. S. Biró, H. B. Nielsen, and J. Knoll, Nucl. Phys. B245, 449 (1984).

    ADS  Google Scholar 

  77. A. Białas and W. Czyź, Phys. Rev. D31, 198 (1985); Nucl. Phys. B267, 242 (1986); S. Kagiyama, A. Nakamura, and A. Minaka, Prog. Theor. Phys. 75, 319 (1986).

    ADS  Google Scholar 

  78. K. Kajantie and T. Matsui, Phys. Lett. B164, 373 (1985); G. Gatoff, A. K. Kerman, and T. Matsui, Phys. Rev. D36, 114 (1986); M. Asakawa and T. Matsui, Phys. Rev. D43, 2871 (1991); G. Gatoff, preprint ORNL/CCIP/91/24, Oak Ridge, 1991.

    ADS  Google Scholar 

  79. D. Boal, Phys. Rev. C33, 2206 (1986).

    ADS  Google Scholar 

  80. R. C. Hwa and K. Kajantie, Phys. Rev. Lett. 56, 696 (1986).

    ADS  Google Scholar 

  81. J. P. Blaizot and A. H. Mueller, Nucl. Phys. B289, 847 (1987).

    ADS  Google Scholar 

  82. F. Niedermayer, Phys. Rev. D34, 3494 (1986).

    ADS  Google Scholar 

  83. P. Lévai and B. Müller, preprint DUKE-TH-90-10.

    Google Scholar 

  84. J. D. Bjorken, Phys. Rev. D27, 140 (1983).

    ADS  Google Scholar 

  85. K. Geiger and B. Müller, Nucl. Phys. B369, 600 (1992); see also lecture by K. Geiger at this School.

    ADS  Google Scholar 

  86. T. Sjöstrand and M. van Zijl, Phys. Rev. D36, 2019 (1987)

    ADS  Google Scholar 

  87. N. Abou-El-Naga, K. Geiger, and B. Müller, J. Phys. G18, 797 (1992).

    ADS  Google Scholar 

  88. X. N. Wang and M. Gyulassy, Phys. Rev. D44, 3501 (1991).

    ADS  Google Scholar 

  89. T. Biró, B. Müller, and X. N. Wang, Phys. Lett. B283, 171 (1992).

    ADS  Google Scholar 

  90. A recent calculation90 of lepton-pair production from the quark-gluon plasma assumes that quarks come into thermal equilibrium with T = 900 MeV at LHC energy. Our arguments indicate that, although this value of T may adequately describe the quark spectrum, the phase space density of quarks will be far below thermal, strongly reducing the lepton-pair yield.

    Google Scholar 

  91. J. Kapusta, L. McLerran, and D. K. Srivastava, Phys. Lett. B283, 145 (1992).

    ADS  Google Scholar 

  92. K. Geiger, preprints UMSI 92/113, 92/174 and 92/175, University of Minnesota (1992).

    Google Scholar 

  93. B. Müller and X. N. Wang, Phys. Rev. Lett. 68, 2437 (1992).

    ADS  Google Scholar 

  94. I. Kawrakow and J. Ranft, preprint UL-HEP-92-08, Leipzig (1992); B. Kämpfer and O. P. Pavlenko, Phys. Lett. B289, 127 (1992).

    Google Scholar 

  95. J. Cleymans and R. Philippe, Z. Phys. C22, 271 (1984); J. Cleymans and C. Vanderzande, Phys. Lett. 147B, 186 (1984).

    ADS  Google Scholar 

  96. J.P. Blaizot and J.Y. Ollitrault, in: Ref. 3, p. 393; see also: H. von Gersdorff, L. McLerran, M. Kataja, and P. V. Ruuskanen, Phys Rev. D34, 794 (1986); M. Kataja, P. V. Ruuskanen, L. McLerran, and H. von Gersdorff, Phys Rev. D34, 794 (1986).

    ADS  Google Scholar 

  97. K. Kajantie and L. McLerran, Ann. Rev. Nucl. Sci. 37, 293 (1987).

    ADS  Google Scholar 

  98. QGP Signatures, edited by V. Bernard, et al. (Editions Frontières, Paris, 1990).

    Google Scholar 

  99. L. van Hove, Phys. Lett. 118B, 138 (1982); Z. Phys. C21, 93 (1983).

    ADS  Google Scholar 

  100. H. von Gersdorff, Nucl. Phys. A461, 251c (1987).

    ADS  Google Scholar 

  101. T. Alexopoulos. et al., Phys. Rev. Lett. 64, 991 (1990); see also L. Gutay’s lecture at this School.

    ADS  Google Scholar 

  102. P. Lévai and B. Müller, Phys. Rev. Lett. 67, 1519 (1991).

    ADS  Google Scholar 

  103. Such data are now becoming available [A. Goshaw, Duke University, private communication.]

    Google Scholar 

  104. X. N. Wang and M. Gyulassy, Phys. Lett. B282, 466 (1992).

    ADS  Google Scholar 

  105. See e.g. the lecture by W. Zajc at this School.

    Google Scholar 

  106. M. Lahanas, et al. [NA35 collaboration], Nucl. Phys. A525, 327c (1991).

    ADS  Google Scholar 

  107. J. Rafelski, Phys. Rep. 88, 331 (1982).

    Google Scholar 

  108. J. Rafelski and B. Müller, Phys. Rev. Lett. 48, 1066 (1982); 56, 2334E (1986).

    ADS  Google Scholar 

  109. P. Koch, B. Müller, and J. Rafelski, Phys. Rep. 142, 167 (1986).

    ADS  Google Scholar 

  110. C. M. Ko, et al., Phys. Rev. Lett. 66, 2577 (1991).

    ADS  Google Scholar 

  111. T. Abbott, et al. [E-802 collaboration], Phys. Lett. B197, 285 (1987); Phys. Rev. Lett. 64, 847 (1990); S. E. Eiseman, et al. [E-810 collaboration]. Phys. Lett. B248, 254 (1990); J. Bartke, et al. [NA35 collaboration], Z. Phys. C48, 191 (1990); H. van Hecke, et al. [HELIOS collaboration], Nucl. Phys. A525, 227c (1991); S. Abatzis, et al. [WA85 collaboration], Phys. Lett. B270, 123 (1991); E. Andersen, et al. [NA36 collaboration], submitted to Phys. Lett. B; For reviews see: O. Hansen, Comments Nucl. Part. Phys. 20, 1 (1991); G. Odyniec, preprint LBL-29996, published in ref. 97.

    ADS  Google Scholar 

  112. R. Mattiello, H. Sorge, H. Stöcker, and W. Greiner, Phys. Rev. Lett. 63, 1459 (1989).

    ADS  Google Scholar 

  113. N. N. Nikolaev, Z. Phys. C44, 645 (1989).

    Google Scholar 

  114. E. Quercigh, Lecture at this School.

    Google Scholar 

  115. J. Rafelski, Phys. Lett. 262B, 333 (1991), and lecture at this School.

    ADS  Google Scholar 

  116. J. Letessier, A. Tounsi, and J. Rafelski, preprint PAR/LPTHE/92-23, Paris (1992).

    Google Scholar 

  117. N. J. Davison, H. G. Miller, R. M. Quick, and J. Cleymans, Phys. Lett. 255B, 105 (1991).

    ADS  Google Scholar 

  118. J. Aichelin and K. Werner, preprint HD-TVP-91-15 and HD-TVP-91-18, Heidelberg (1991).

    Google Scholar 

  119. H. Sorge, M. Berenguer, H. Stöcker, and W. Greiner, preprint LA-UR-92-1078; see also the lecture by M. Sorge at this School.

    Google Scholar 

  120. J. P. Guillaud, et al. [NA38 collaboration], Nucl. Phys. A525, 449c (1991).

    ADS  Google Scholar 

  121. P. Koch and U. Heinz, Nucl. Phys. A525, 293c (1991); see also lecture by P. Koch at this School.

    ADS  Google Scholar 

  122. J. D. Bjorken, Fermilab pub. 82/59, Batavia (unpublished).

    Google Scholar 

  123. Y. Koike and T. Matsui, preprint, U. of MD PP #91-223, Maryland (1991).

    Google Scholar 

  124. T. A. DeGrand and C. E. DeTar, Phys. Rev. D34, 2469 (1986); K. Kanaya and H. Satz, Phys. Rev. D34, 3193 (1986).

    ADS  Google Scholar 

  125. F. Karsch, Z. Phys. C38, 147 (1988).

    ADS  Google Scholar 

  126. F. Karsch and H. W. Wyld, Phys. Lett. 213B, 505 (1988).

    ADS  Google Scholar 

  127. D. Blaschke, Nucl. Phys. A525, 269c (1991).

    ADS  Google Scholar 

  128. F. Karsch and R. Petronzio, Phys. Lett. 212B, 255 (1988); J. P. Blaizot and J. Y. Ollitraut, Phys. Lett. 199B, 499 (1987).

    ADS  Google Scholar 

  129. S. Hioki, T. Kanki, and O. Miyamura, Prog. Theor. Phys. 84, 317 (1990); 85, 603 (1991).

    ADS  Google Scholar 

  130. S. Gavin, M. Gyulassy, and A. Jackson, Phys. Lett. 207B, 257 (1988).

    ADS  Google Scholar 

  131. S. Gavin, R. Vogt, Nucl. Phys. B345, 104 (1990); S. Gavin, preprint HU-TFT-91-33, Helsinki (1991).

    ADS  Google Scholar 

  132. R. Vogt, S. J. Brodsky, and P. Hoyer, Nucl. Phys. B360, 67 (1991).

    ADS  Google Scholar 

  133. J. Blaizot and J. Y. Ollitraut, Phys. Lett. 217B, 392 (1989).

    ADS  Google Scholar 

  134. J. M. Moss, et al. [E-772 collaboration], Nucl. Phys. A525, 285c (1991).

    ADS  Google Scholar 

  135. A. Guichard, et al. [NA38 collaboration], Nucl. Phys. A525, 467c (1991).

    ADS  Google Scholar 

  136. F. Karsch and H. Satz, preprint CERN-TH-5900/90, Z. Phys. C (in press).

    Google Scholar 

  137. Possibly because their quark-gluon plasma scenario is oversimplified. Also the analysis of the hadronic scenario is based on unrealistically high energy densities in a pure pion gas.

    Google Scholar 

  138. H. A. Weldon, Phys. Rev. Lett. 66, 283 (1991).

    ADS  Google Scholar 

  139. C. Gale and J. Kapusta, Phys. Rev. D43, 3080 (1991).

    ADS  Google Scholar 

  140. E. Braaten, R. D. Pisarski, and T. C. Yuan, Phys. Rev. Lett. 64, 2242 (1990).

    ADS  Google Scholar 

  141. P. J. Siemens and S. A. Chin, Phys. Rev. Lett. 55 1266 (1985).

    ADS  Google Scholar 

  142. D. Seibert, Phys. Rev. Lett. 68, 1476 (1992).

    ADS  Google Scholar 

  143. M. Kataja, P. V. Ruuskanen, J. Letessier, and A. Tounsi, preprint, University of Jyväskylä and LPTHE, Univ. Paris VII (1991).

    Google Scholar 

  144. U. Heinz and K. S. Lee, Phys. Lett. 259B, 162 (1991).

    ADS  Google Scholar 

  145. H. W. Barz, G. Bertsch, B. L. Friman, H. Schulz and S. Boggs, Phys. Lett. 265B, 219 (1991); C. Chanfray and P. Schuck, preprint, Grenoble 1991; Z. Aouissat, G. Chanfray, P. Schuck, and G. Welke, preprint, Grenoble 1991; C. M. Ko, P. Levai and W. J. Qin, preprint, Texas A&M University 1991.

    ADS  Google Scholar 

  146. D. Lissauer and E. V. Shuryak, Phys. Lett. 253B, 15 (1991); P. Z. Bi and J. Rafelski, Phys. Lett. 262B, 485 (1991).

    ADS  Google Scholar 

  147. R. Albrecht, et al. [WA80 collaboration], Z. Phys. C51, 1 (1991).

    MathSciNet  Google Scholar 

  148. J. Kapusta, P. Lichard, and D. Seibert, Phys. Rev. D44, 2774 (1991).

    ADS  Google Scholar 

  149. P. V. Ruuskanen, Nucl. Phys, A525, 255c (1991); see also the lecture by P. V. Ruuskanen at this School.

    ADS  Google Scholar 

  150. S. A. Chin and A. K. Kerman, Phys. Rev. Lett. 43, 1292 (1979).

    ADS  Google Scholar 

  151. M. Tamada, Nuovo Cim. 41B, 245 (1977).

    ADS  Google Scholar 

  152. R. L. Jaffe, Phys. Rev. Lett. 38, 195 (1977); 38, 1617E (1977).

    MathSciNet  ADS  Google Scholar 

  153. C. B. Dover, P. Koch and M. May, Phys. Rev. C40, 115 (1989).

    ADS  Google Scholar 

  154. A. A. Anselm and M. G. Ryskin, Phys. Lett. B266, 482 (1991); J. D. Bjorken, preprints SLAC-PUB-5545 and-5673, Stanford (1991); J. P. Blaizot and A. Krzywicki, preprint LPTHE Orsay 92/11.

    ADS  Google Scholar 

  155. B. Müller and S. Schramm, Phys. Rev. C43, 2791 (1991); B. Müller, Nucl. Phys. A544, 95c (1992).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Müller, B. (1993). Physics of the Quark-Gluon Plasma. In: Gutbrod, H.H., Rafelski, J. (eds) Particle Production in Highly Excited Matter. NATO ASI Series, vol 303. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2940-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2940-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6277-7

  • Online ISBN: 978-1-4615-2940-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics