Enhanced Fundamental Linewidth of a Laser Due to Outcoupling

  • W. A. Hamel
  • M. P. van Exter
  • J. P. Woerdman


A laser can be thought of as an amplitude-stabilized oscillator. Such an oscillator has a finite linewidth, due to phase-changing events. In most cases these events have a “technical” origin, such as fluctuations in the cavity length due to acoustic perturbations. However, even in a perfectly stable environment there is still phase diffusion due to spontaneous emission; this leads to the quantum-limited or fundamental linewidth as first discussed by Schawlow and Townes [1]. In recent years it has been shown by others [2,3,4,5] and by us [6,7,8,9] that the standard (Schawlow-Townes) formula for the fundamental linewidth must be modified if the outcoupling through the mirrors is large. In this paper we review our work [6,7,8,9] in this field, starting in section 2 with theory. In section 3 we report on the diagnostics of the semiconductor lasers used in the experiments. The technique of linewidth measurement is discussed in section 4 and actual results are given in section 5, together with a comparison with theory.


Spontaneous Emission Semiconductor Laser Phase Diffusion Laser Linewidth Spontaneous Emission Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.L. Schawlow and C.H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).CrossRefGoogle Scholar
  2. 2.
    K. Ujihara, “Phase noise in a laser with output coupling,” IEEE J. Quantum Electron. QE-20, 814–818 (1984).CrossRefGoogle Scholar
  3. 3.
    C.H. Henry, “Theory of spontaneous emission in open resonators and its application to lasers and optical amplifiers,” IEEE J. Lightwave Technol. LT-4, 288–297 (1986).CrossRefGoogle Scholar
  4. 4.
    J. Arnaud, “Natural linewidth of semiconductor lasers,” Electron. Lett. 22, 538–540 (1986).CrossRefGoogle Scholar
  5. 5.
    S. Prasad and B.S. Abbott, “Mirror transmission and laser phase diffusion in the quantum regime,” Phys. Rev. A 38, 3551–3555 (1988).CrossRefGoogle Scholar
  6. 6.
    W.A. Hamel, “Effect of outcoupling on the quantum-limited linewidth of a semiconductor laser,” Ph.D. thesis, Leiden University, February 1991.Google Scholar
  7. 7.
    W.A. Hamel and J.P. Woerdman, “Nonorthogonality eigenmodes of a laser,” Phys. Rev. A 40, 2785–2787 (1989).CrossRefGoogle Scholar
  8. 8.
    W.A. Hamel and J.P. Woerdman, “Observation of enhanced fundamental linewidth of a laser due to nonorthogonality of its eigenmodes,” Phys. Rev. Lett. 64, 1506–1509 (1990).CrossRefGoogle Scholar
  9. 9.
    M.P. van Exter, W.A. Hamel and J.P. Woerdman, “Non-uniform phase diffusion in a laser,” Phys. Rev. A 43 (June 1991).Google Scholar
  10. 10.
    W.A. Hamel, M.P. van Exter, A. Shore and J.P. Woerdman, “Numerical study of the effect of saturation on the linewidth of a semiconductor laser,” submitted to IEEE J. Quantum Electron.Google Scholar
  11. 11.
    K. Petermann, “Laser diode modulation and noise”Kluwer Academic Publishers (Dordrecht, 1988).Google Scholar
  12. 12.
    A.E. Siegman, “Lasers,” University Science Books (Mill Valley, 1986).Google Scholar
  13. 13.
    C.H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 259–264 (1982).CrossRefGoogle Scholar
  14. 14.
    W.A. Hamel, M. Babeliowsky, J.P. Woerdman and G.A. Acket, “,” accepted for publication in IEEE Photon. Technol. Lett.Google Scholar
  15. 15.
    R.A. Valenzuela, L.J. Cimini, R.W. Wilson, K.C. Reichmann and A. Grot, “Frequency stabilization of AlGaAs lasers to the absorbtion of Rubidium using the Zeeman effect”, Electron. Lett. 24, 725–726 (1988).CrossRefGoogle Scholar
  16. 16.
    G.P Agarwal, “Line narrowing in a single-mode injection laser due to external optical feedback”, IEEE J. Quantum Electron. QE-20, 468–471 (1984).CrossRefGoogle Scholar
  17. 17.
    J. Käppel and W. Heinlein, “Experimental determination of paracitic optical feedback by diode laser linewidth measurements”, Electron. Lett. 25, 447–448 (1989).CrossRefGoogle Scholar
  18. 18.
    K. Kikuchi, “Lineshape measurement of semiconductor lasers below threshold”, IEEE J. Quantum Electron. QE-24, 1814–1817 (1988).CrossRefGoogle Scholar
  19. 19.
    W. Elsässer and E.O Göbel, “Multimode effects in the spectral linewidth of semiconductor lasers,” IEEE J. Quantum. Electron. QE-21, 687–692 (1985).CrossRefGoogle Scholar
  20. 20.
    K. Vahala and A. Yariv, Appl. Phys Lett. 43, 140–142 (1983).Google Scholar
  21. 21.
    K. Kikuchi, “Effect of 1/f type FM noise on semiconductor-laser linewidth residual in high-power limit,” IEEE J. Quantum Electron. QE-25, 684–688 (1989).CrossRefGoogle Scholar
  22. 22.
    G.P. Agrawal and R. Roy, “Effect of injection-current fluctuations on the spectral linewidth of semiconductor lasers,” Phys. Rev. A 37, 2495–2501 (1988).Google Scholar
  23. 23.
    G.P Agrawal, “Intensity dependence of the linewidth enhancement factor and its implications for semiconductor lasers,” IEEE Photon. Technol. Lett. 1, 212–214 (1989).CrossRefGoogle Scholar
  24. 24.
    S.E. Miller, “The influence of power level on injection laser linewidth and intensity fluctuations including side-mode contributions,” IEEE J. Quantum Electron. QE-24, 1873–1876 (1988).CrossRefGoogle Scholar
  25. 25.
    U. Krüger and K. Petermann, “The semiconductor laser linewidth due to the presence of side modes,” IEEE J. Quantum Electron. QE-24, 2355–2358 (1988).CrossRefGoogle Scholar
  26. 26.
    S. Prasad, private communication.Google Scholar
  27. 27.
    H.J. den Blanken, private communication.Google Scholar

Copyright information

© Plenum Press, New York 1993

Authors and Affiliations

  • W. A. Hamel
    • 1
    • 2
  • M. P. van Exter
    • 1
  • J. P. Woerdman
    • 1
  1. 1.Huygens LaboratoryUniversity of LeidenLeidenThe Netherlands
  2. 2.PTT Telecom b.v.Gravenhagethe Netherlands

Personalised recommendations