Liquid-State Theory for Some Non-Equilibrium Processes

  • James A. Given
  • George Stell
Part of the Condensed Matter Theories book series (COMT, volume 8)


Recent advances in liquid-state theory permit the calculation of thermodynamic quantities and correlation functions for systems in which some of the degrees of freedom are quenched, or frozen in place, while the rest are annealed. Basic examples include models for porous media, crystals containing quenched impurities, and spin glasses. We further extend these methods to treat materials constructed in layers, each layer being added to the system and allowed to equilibrated, then frozen in place before the next layer is added. We discuss sequentially adsorbed systems as an important class of examples.


Correlation Function Spin Glass Pairwise Interaction Replica Method Direct Correlation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.M. Ziman, “Models of Disorder”, Cambridge Univ. Press, Cambridge (1979).Google Scholar
  2. 2.
    G. Stell, A.M.S., Statistical mechanics applied to random-media problems, in: “AMS-SIAM Workshop on Random Media”, G. Papanicoleau, ed., New York, AMS, (1991).Google Scholar
  3. 3.
    J.A. Given and G. Stell, Towards a realistic, general, continuum theory of clustering, in: “On Clusters and Clustering: from Atoms to Fractals”, P. Reynolds ed., North Holland, New York (1991).Google Scholar
  4. 4.
    J.A. Given, Liquid-state methods for random media: I. random sequential adsorption, Phys. Rev. A 45:816 (1991).ADSCrossRefGoogle Scholar
  5. 5.
    J.A. Given, Liquid-state methods for random media: II. spin glasses, J. Chem. Phys. 96:2287 (1992).ADSCrossRefGoogle Scholar
  6. 6.
    W.A. Madden and E.D. Glandt, Distribution functions for fluids in random media, J. Stat. Phys. 51:537(1988).MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    W.A. Madden, Fluid distributions in random media: arbitrary matrices, J. Chem. Phys. 96:5422 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    L.A. Fanti, E.D. Glandt, and W.G. Madden, Fluids in equilibrium with disordered porous materials: integral equation theory, J. Chem. Phys. 51:537(1988).Google Scholar
  9. 9.
    J.A. Given and G. Stell, Comment on: fluid distributions in two-phase random media: arbitrary matrices, J. Chem. Phys. 96: xxxx (1992).Google Scholar
  10. 10.
    J.A. Given and G. Stell, A realistic model for a spin glass, in: “Complex Fluids: MRS Symposium Proceedings”, Materials Research Society, Pittsburg, 1991.Google Scholar
  11. 11.
    G. Stell, Mayer-Montroll equations (and some variants) through history for fun and profit, in: “The Wonderful World of Stochastics”, M.F. Schlesinger and G.H. Weiss eds., North Holland, Amsterdam (1985).Google Scholar
  12. 12.
    M. Mezard, G. Parisi, and M.A. Virasoro, “Spin Glass Theory and Beyond”, World Scientific, Singapore (1987).MATHGoogle Scholar
  13. 13.
    R. Kraichnan and S.Y. Chen, Is there a statistical mechanics of turbulence?, Physica D37:160 (1989).MathSciNetADSGoogle Scholar
  14. 14.
    H.E. Stanley and N. Ostrowsky, “Random Fluctuations and Pattern Growth: Experiments and Models”, Kluwer Academic, Norwell MA (1988).CrossRefGoogle Scholar
  15. 15.
    K. Kang, S. Redner, P. Meakin, and F. Leyvraz, Long-time crossover phenomena in coagulation kinetics, Phys. Rev. A33:1171 (1986).ADSGoogle Scholar
  16. 16.
    See e.g. E. Guyon, C.D. Mitescu, J.P. Hulin, and S. Roux, Physica D38:172 (1989).ADSGoogle Scholar
  17. 17.
    G. Tarjus, P. Schaaf, and J. Talbot, Random sequential addition: a distribution function approach, J. Stat. Phys. 63:167 (1991).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    J.W. Evans, RSA review.Google Scholar
  19. 19.
    P.L. Garrido, J.L. Lebowitz, C. Maes, and H. Spohn, Long-range correlations for conservative dynamics, Phys. Rev. A 42:1954 (1990).MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    L. Onsager, Ann. N.Y. Acad. Sci. 51:627 (1949).ADSCrossRefGoogle Scholar
  21. 21.
    B. Widom and J.S. Rowlinson, New model for the study of liquid-vapor phase transitions, J. Chem. Phys. 52:1670 (1970).ADSCrossRefGoogle Scholar
  22. 22.
    J.A. Given and G. Stell, The continuum Potts model and continuum percolation, Physica A 161:152 (1989).MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    J.A. Given, I.C. Kim, S. Torquato, and G. Stell, Comparison of analytic and numerical results for the mean cluster density in continuum percolation, J. Chem. Phys. 93:5128 (1990).ADSCrossRefGoogle Scholar
  24. 24.
    R. Fisch and A.B. Harris, Critical behavior of random resistor networks near the percolation threshold, Phys. Rev. B18:416 (1978).ADSGoogle Scholar
  25. 25.
    K. Binder and A.P. Young, Spin glasses: experimental facts, theoretical concepts and open questions, Rev. Mod. Phys. 58:801 (1986).ADSCrossRefGoogle Scholar
  26. 26.
    D. Chandler, H.C. Anderson, Optimized cluster expansion for classical fluids III molecular fluids, J. Chem. Phys. 57:1930 (1972).ADSCrossRefGoogle Scholar
  27. 27.
    D. Chandler and L. Pratt, Statistical mechanics of chemical equilbrium and the intramolecular structure of non-rigid molecules in condensed phases, J. Chem. Phys. 65:2925 (1976).ADSCrossRefGoogle Scholar
  28. 28.
    P.T. Cummings, G.P. Morriss, and G. Stell, Solution of the site-site Ornstein-Zernike equation for non-ideal dipolar spheres, J. Phys. Chem. 86:1696 (1982).CrossRefGoogle Scholar
  29. 29.
    L. Pratt, Connection between central-force model treatment of polyatomic molecular liquids and the interaction-site cluster expansion, Mol. Phys. 43:1163 (1981).ADSCrossRefGoogle Scholar
  30. 30.
    H.C. Andersen, Cluster expansions for hydrogen-bonded fluids II. dense liquids, J. Chem. Phys. 61:4985 (1974).ADSCrossRefGoogle Scholar
  31. 31.
    M.S. Wertheim, Fluids with highly directional attractive forces IV. equilibrium polymerization, J. Stat. Phys. 42:477 (1986).MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    M.S. Wertheim, Integral equation for the Smith-Nezbeda model of associated fluids, J. Chem. Phys. 88:1145 (1988).ADSCrossRefGoogle Scholar
  33. 33.
    J.S. Høye and G. Stell, Configurationally disordered spin systems, Phys. Rev. Lett. 36:1569 (1976).ADSCrossRefGoogle Scholar
  34. 34.
    S.H. Adachi, A.E. Panson, and R.M. Stratt, The effect of an unusual type of quenched disorder on phase transitions: illustration in a mixed-valence system, J. Chem. Phys. 88:1134 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • James A. Given
    • 1
  • George Stell
    • 1
  1. 1.Department of ChemistryState University of New York at Stony Brook StonyBrookUSA

Personalised recommendations