Excitations of the Surface of Liquid 4He

  • K. A. Gernoth
  • J. W. Clark
  • G. Senger
  • M. L. Ristig
Part of the Condensed Matter Theories book series (COMT, volume 8)


The surface of liquid 4He at zero temperature and the 4He vapor-liquid interface at temperatures T > 0 are currently the objects of substantial experimental and theoretical interest. Part of this activity concentrates on studying ground state properties, such as the thickness of the 4He surface and interface, for which some experimental data over a range of temperatures are now available.1, 2 Other experimental and theoretical work explores the elementary excitations supported by these inhomogeneous 4He systems. The spectrum of excitations of the surface of liquid 4He in the short wavelength regime has been measured in recent experiments on 4He films adsorbed on a substrate.3, 4 It is well established by earlier measurements5–9 that at long wavelengths the dispersion relation of 4He surface modes may be described correctly by the laws of hydrodynamics.


Excitation Energy Density Profile Elementary Excitation Spatial Distribution Function Surface Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. B. Lurio, T. A. Rabedeau, P. S. Pershan, I. F. Silvera, M. Deutsch, S. D. Kosowsky, and B. M. Ocko, Phys. Rev. Lett. 68, 2628 (1992).ADSCrossRefGoogle Scholar
  2. 2.
    D. V. Osborne, J. Phys. Condens. Matter 1, 289 (1989).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    H. J. Lauter, H. Godfrin, V. L. P. Frank, and P. Leiderer, Phys. Rev. Lett. 68, 2484 (1992).ADSCrossRefGoogle Scholar
  4. 4.
    H. J. Lauter, H. Godfrin, and P. Leiderer, J. Low Temp. Phys. 87, 425 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    K. A. Pickar and K. R. Atkins, Phys. Rev. 178, 399 (1969).ADSCrossRefGoogle Scholar
  6. 6.
    P. J. King and A. F. G. Wyatt, Proc. Roy. Soc. A 322, 355 (1971).ADSGoogle Scholar
  7. 7.
    S. Cunsolo and G. Jacucci, in: “Low Temperature Physics LT-13,”Vol. 1, Proc. 13th Int. Conf. on Low Temperature Physics, Boulder, 1972, K. D. Timmerhaus, W. J. O’Sullivan, and E. F. Hammel, eds., Plenum Press, New York (1973).Google Scholar
  8. 8.
    S. T. Boldarev and V. P. Peshkov, Physica 69, 141 (1973).ADSCrossRefGoogle Scholar
  9. 9.
    F. Wagner, J. Low Temp. Phys. 13, 317 (1973).ADSCrossRefGoogle Scholar
  10. 10.
    D. O. Edwards and W. F. Saam, in: “Progress in Low Temperature Physics,” D. F. Brewer, ed., North-Holland, Amsterdam (1978).Google Scholar
  11. 11.
    G. Ji and M. Wortis, Phys. Rev. B 34, 7704 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    L. Pitaevskii and S. Stringari, Phys. Rev. B 45, 13133 (1992).ADSCrossRefGoogle Scholar
  13. 13.
    C. C. Chang and M. Cohen, Phys. Rev. B 11, 1059 (1975).ADSCrossRefGoogle Scholar
  14. 14.
    E. Krotscheck, Phys. Rev. B 31, 4258 (1985).ADSCrossRefGoogle Scholar
  15. 15.
    J. L. Epstein and E. Krotscheck, Phys. Rev. B 37, 1666 (1988).ADSCrossRefGoogle Scholar
  16. 16.
    L. Szybisz and M. L. Ristig, Phys. Rev. B 40, 4391 (1989).ADSCrossRefGoogle Scholar
  17. 17.
    E. Krotscheck and C. J. Tymczak, Phys. Rev. B 45, 217 (1992).ADSCrossRefGoogle Scholar
  18. 18.
    M. V. Rama Krischna and K. B. Whaley, J. Chem. Phys. 93, 746 (1990).ADSCrossRefGoogle Scholar
  19. 19.
    S. A. Chin and E. Krotscheck, Phys. Rev. B 45, 852 (1992).ADSCrossRefGoogle Scholar
  20. 20.
    K. A. Gernoth and M. L. Ristig, Phys. Rev. B 45, 2969 (1992).ADSCrossRefGoogle Scholar
  21. 21.
    R. P. Feynman, Phys. Rev. 94, 262 (1954).ADSMATHCrossRefGoogle Scholar
  22. 22.
    R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956).ADSMATHCrossRefGoogle Scholar
  23. 23.
    J. W. Clark and E. Feenberg, Phys. Rev. 113, 388 (1959).MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    E. Feenberg, “Theory of Quantum Fluids,” Academic Press, New York (1969).Google Scholar
  25. 25.
    S. Stringari and J. Treiner, Phys. Rev. B 36, 8369 (1987).ADSCrossRefGoogle Scholar
  26. 26.
    A. Guirao, M. Centelles, M. Barranco, M. Pi, A. Polls, and X. Viñas, J. Phys. Condens. Matter 4, 667 (1992).ADSCrossRefGoogle Scholar
  27. 27.
    C. L. Cleveland, U. Landman, and R. N. Barnett, Phys. Rev. B 39, 117 (1989).ADSCrossRefGoogle Scholar
  28. 28.
    P. Sindzingre, M. L. Klein, and D. M. Ceperley, Phys. Rev. Lett. 63, 1601 (1989).ADSCrossRefGoogle Scholar
  29. 29.
    M. Saarela, P. Pietiläinen, and A. Kallio, Phys. Rev. B 27, 231 (1983).ADSCrossRefGoogle Scholar
  30. 30.
    E. Krotscheck, G.-X. Quian, and W. Kohn, Phys. Rev. B 31, 4245 (1985).ADSCrossRefGoogle Scholar
  31. 31.
    E. Krotscheck, S. Stringari, and J. Treiner, Phys. Rev. B 35, 4754 (1987).ADSCrossRefGoogle Scholar
  32. 32.
    D. Schiff and L. Verlet, Phys. Rev. 160, 208 (1967).ADSCrossRefGoogle Scholar
  33. 33.
    T. Morita and K. Hiroike, Prog. Theor. Phys. 25, 537 (1961).MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    L. S. Ornstein and F. Zernike, Proc. Acad. Sci. Amsterdam 17, 793 (1914).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • K. A. Gernoth
    • 2
  • J. W. Clark
    • 2
  • G. Senger
    • 1
  • M. L. Ristig
    • 2
  1. 1.Institut für Theoretische PhysikUniversität zu KölnKöln 41Germany
  2. 2.McDonnell Center for the Space Sciences and Department of PhysicsWashington UniversitySt. LouisUSA

Personalised recommendations