Advertisement

Glomérulos, Barrels, Columns and Maps in Cortex: An Homage to Dr. Rafael Lorente de Nó

  • Thomas A. Woolsey
Part of the NATO ASI series book series (NSSA, volume 239)

Abstract

My first contact with Dr. Rafael Lorente de Nó was by mail. I was working on the anatomy of the mouse cerebral cortex in the summer of 1966 and found a reference to his classic paper on the cerebral cortex of the mouse (Lorente de Nó,’ 22) (*See note added in proof, p.498). The Medical Library at the University of Wisconsin did not have the Trabajos in its serials collection and I wrote Dr. Lorente de Nó at the Rockefeller to request a reprint. A short time later, I received a polite, slightly bemused and, I fancy, flattered response written in a hand I later would recognize well. The supply of reprints was exhausted decades earlier, I was told, but the author appreciated my request.

Keywords

Somatosensory Cortex Apical Dendrite Infraorbital Nerve Cortical Column Mouse Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belford, G.R. and Killackey, H.P., 1979, The development of vibrissae representation in subcortical trigeminal centers of the neonatal rat, J. Comp. Neurol., 188:63.PubMedCrossRefGoogle Scholar
  2. Bernardo, K.L., McCasland, J.S. and Woolsey, T.A., 1990, Local axonal trajectories in mouse barrel cortex, Exp. Brain Res., 82:247.PubMedCrossRefGoogle Scholar
  3. Bernardo, K.L., McCasland, J.S., Woolsey, T.A. and Strominger, R.N., 1990, Local intra-and interlaminar connections in mouse barrel cortex, J. Comp. Neurol., 291:231.PubMedCrossRefGoogle Scholar
  4. Carvell, G. and Simons, D.J., 1990, Biometric analyses of vibrissal tactile discrimination in the rat, J. Neurosci., 10:2638.PubMedGoogle Scholar
  5. Cervantes Saavedra, M., 1965, “The Adventures of Don Quixote,” J.M. Cohen (trans.), Penguin, Baltimore.Google Scholar
  6. Cobas, A., E. Welker, Fairén, A., Kraftstik, R. and Van der Loos, H., 1987, The GABAergic neurons in the barrel cortex of the mouse: an analysis using neuronal archetypes, J. Neurocytol., 16:843.PubMedCrossRefGoogle Scholar
  7. Cobas, A., Fairén, A., Alverez-Bolado, G., and Sánchez, M.P., 1991, Prenatal development of the intrinsic neurons of the rat neocortex: a comparative study of the distribution of GABA-immunoreactive cells and the GABAa receptor, Neurosci., 40:375.CrossRefGoogle Scholar
  8. Cooper, N.G.F. and Steindler, D.A., 1986, Lectins demarcate the barrel subfield in the somatosensory cortex of the early postnatal mouse, J. Comp. Neurol., 249:157.PubMedCrossRefGoogle Scholar
  9. Crandall, J.E., Misson, J.-P., and Butler, D., 1990, The development of radial glia and radial dendrites during barrel formation in mouse somatosensory cortex, Dev. Brain Res., 55:87.CrossRefGoogle Scholar
  10. Crossin, K.L., Hoffman, S., Tan, S.-S., and Edelman, G.M., 1989, Cytotactin and its proteoglycan ligand mark structural and functional boundaries in somatosensory cortex of the early postnatal mouse, Dev. Biol., 136:381.PubMedCrossRefGoogle Scholar
  11. Dawson, D.R. and Killackey, H.P., 1987, The organization and mutability of the forepaw and hindpaw representations in the somatosensory cortex of the neonatal rat, J. Comp. Neurol., 256:246.PubMedCrossRefGoogle Scholar
  12. de Veries, I., 1912, Über die Zytoarchitectonik der Grosshirnrinde der Maus und ü ber die Beziehungen der einzelnen Zellschichten zum Corpus Callosum auf Grund von experimentellen Läsionen, Folia Neurobiol. (Lpz.), 6:288.Google Scholar
  13. Droogleever Fortuyn, A.B., 1914, Cortical cell-lamination of the hemispheres of some rodents, Arch. Neurol. Psychiat. (Lond.), 6:221.Google Scholar
  14. Durham, D., Woolsey, T.A. and Kruger, L., 1981, Cellular localization of 3H-deoxy-d-glucose (2DG) from paraffin embedded brains, J. Neurosci., 1:519.PubMedGoogle Scholar
  15. Friede, R.L., 1966, “Topographic Brain Chemistry,” Academic, New York.Google Scholar
  16. Gallego, A., 1990, La obra científica del doctor Lorente de Nó, An. Real Acad. Nacional Med., 107:467.Google Scholar
  17. Godement, P., Vaneslow, J., Thanos, S., and Bonhoeffer, F., 1987, A study in developing visual system with a new method of staining neurons and their processes in fixed tissue, Development, 101:697.PubMedGoogle Scholar
  18. Harris, R.M., 1986, Morphology of physiologically identified thalamocortical relay neurons in the rat ventrobasal thalamus, J. Comp. Neurol., 251:491.PubMedCrossRefGoogle Scholar
  19. Hogan, B., Costantini, F., and Lacy, E., 1986, “Manipulating the Mouse Embryo: A Labororatory Manual,” Cold Spring Harbor, Cold Spring Harbor.Google Scholar
  20. Hubel, D.H. and Wiesen, T.N., 1963, Shape and arrangement of columns in cat’s striate cortex, J. Physiol., (Lond.), 165:559.Google Scholar
  21. Huston, K.A. and Masterson, R.B., 1986, The sensory contribution of a single vibrissa’s cortical barrel, J. Neurophysiol., 56:1196.Google Scholar
  22. Isenschmid, R., 1911, Zur Kenntnis der Grosshirnrinde der Maus, Abh. kön. preuss. Akad. Wiss., Anhang., 3:1.Google Scholar
  23. Jacquin, M.F., Mooney, R.D., and Rhoades, R.W., 1984, Axon arbors of functionally distinct whisker afferents are similar in medullary dorsal horn, Brain Res., 298:175.PubMedCrossRefGoogle Scholar
  24. Jhaveri, S., Ersurumlu, R.S. and Crossin, K., 1991, Barrel construction in rodent neocortex: role of thalamic afferents versus extracellular matrix molecules, Proc. Nat. Acad. Sci. USA, 88:4489.PubMedCrossRefGoogle Scholar
  25. Jones, E.G., Burton, H. and Porter, R., 1975, Commisural and cortico-cortical “columns” in the somatosensory cortex of primates, Science 190:572.PubMedCrossRefGoogle Scholar
  26. Keller, A. and White, E.L., 1987, Synaptic organization of GABAergic neurons in the mouse SmI cortex, J. Comp. Neurol., 262:1.PubMedCrossRefGoogle Scholar
  27. Killackey, H.P. and Beiford, G.R., 1979, The formation of afferent patterns in the somatosensory cortex of the neonatal rat, J. Comp. Neurol., 183:285.PubMedCrossRefGoogle Scholar
  28. Killackey, H.P., Jacquin, M.F. and Rhoades, R.W., 1990, Development of somatosensory system structures, in: “Development of Sensory Systems in Mammals”, J. Coleman, ed., Wiley, New York.Google Scholar
  29. Kruger, L. and Woolsey, T.A., 1990, Rafael Lorente de Nó: 1902–1990, J. Comp. Neurol., 300:1.PubMedCrossRefGoogle Scholar
  30. Land, P.W. and Simons, DJ., 1985, Cytochrome oxidase staining in the rat SmI barrel cortex, J. Comp. Neurol., 238:225.PubMedCrossRefGoogle Scholar
  31. Lin, C.-S., Lu, S.M., and Schmechel, D.E., 1985, Glutamic acid decarboxylase immunoreactivity in layer IV of barrel cortex of rat and mouse, J. Neurosci., 7:1934.Google Scholar
  32. Loewy, A.D., 1971, Ramón y Cajal and methods of neuroanatomical research, Persp. Biol. Med., 15:7.Google Scholar
  33. Lorente de Nó, R., 1922, La corteza cerebral del ratón, Trab. Lab. Invest. Biol. Univ. Madrid, 20:41.Google Scholar
  34. Lorente de Nó, R., 1938, Architectonics and structure of the cerebral cortex, in: “Physiology of the Nervous System,” J.F. Fulton, ed., Oxford, London.Google Scholar
  35. Lorente de Nó, R., 1992, The cerebral cortex of the mouse (A first contribution — the “acoustic” cortex), Somatosensory and Motor Res., 9:3.CrossRefGoogle Scholar
  36. Lund, J.S. and Booth, R.G., 1975, Interlaminar connections and pyramidal neuron organization in the visual cortex, area 17, of the macaque monkey, J. Comp. Neurol., 159:305.CrossRefGoogle Scholar
  37. Marx, J.L., 1982, Tracking genes in developing mice, Science, 215:44.PubMedCrossRefGoogle Scholar
  38. McCasland, J.S. and Woolsey, T.A., 1988, A new high resolution 2-deoxyglucose method for featuring double labeling and automated data collection, J. Comp. Neurol., 278:543.PubMedCrossRefGoogle Scholar
  39. McCasland, J.S. and Woolsey, T.A., 1988, High resolution 2DG mapping of functional cortical columns in mouse barrel cortex, J. Comp. Neurol., 278:555.PubMedCrossRefGoogle Scholar
  40. McCasland, J.S., Carvell, G.E., Simons, D.J. and Woolsey, T.A., 1991, Functional asymmetries in the rodent barrel cortex, Somatosensory and Motor Res., 8:111.CrossRefGoogle Scholar
  41. Montague, P.R., Gaily, J.A., and Edelman, G.M., 1991, Spatial signaling in the development and function of neural connections, Cerebral Cortex, 1:199.PubMedCrossRefGoogle Scholar
  42. Mountcastle, V.B., 1957, Modality and topographic projection of single neurons of cat’s somatic sensory cortex. J. Neurophysiol., 20:408.PubMedGoogle Scholar
  43. Nachlas, M.M., Tsou, K.-C., de Souza, E., Cheng C.-S., and Seligman, A.M., 1956, Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole, J. Histochem. Cytochem., 5:420.CrossRefGoogle Scholar
  44. O’Leary, D.D.M., 1989, Do cortical areas emerge from a protocortex? TINS, 12:400.PubMedGoogle Scholar
  45. O’Leary, J.L. and Bishop, G.H., 1938, The optically excitable cortex of the rabbit, J. Comp. Neurol., 68:423.CrossRefGoogle Scholar
  46. Peinado, A. and Katz, L.C., 1990, Development of cortical spiny stellate cells: retraction of a transient apical dendrite, Soc. Neurosci. Abstr., 16:1127.Google Scholar
  47. Rhoades, R.W., Bennett-Clarke, C.A., Chiaia, N.L., White, F.A., Macdonald, G.J., Haring, J.H., and Jacquin, M.F., 1990, Development and lesion induced reorganization of the cortical representation of the rat’s body surface as revealed by immunocytochemistry for serotonin, J. Comp. Neurol., 293:190.PubMedCrossRefGoogle Scholar
  48. Rhoades, R.W., Killackey, H.P., Chiaia, N.L. and Jacquin, M.F., 1990, Physiological development and plasticity of somatosensory neurons, in: “Development of Sensory Systems in Mammals”, J. Coleman, ed., Wiley, New York.Google Scholar
  49. Rice, F.L. and Van der Loos, H., 1977, Development of the barrels and barrel field in the somatosensory cortex of the mouse, J. Comp. Neurol., 171:545.PubMedCrossRefGoogle Scholar
  50. Rice, F.L. and Munger, B.L. 1986, A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle-sinus complexes, J. Comp. Neurol., 252:154.PubMedCrossRefGoogle Scholar
  51. Rose, M., 1929, Cytoarchitektonischer Atlas der Grosshirnrinde der Maus, J. Psychol. Neurol., (Lpz.), 40:1.Google Scholar
  52. Rose, M., 1912, Histologische Lokalisation der Grosshirnrinde der kleinen Säugetiere (Rodsentia, Insectivora, Chiroptera), J. Psychol. Neruol. (Lpz.), 19:389.Google Scholar
  53. Schlaggar, B.L. and O’Leary, D.D.M., 1991, Potential of visual cortex to develop an array of functional units unique to somatosensory cortex, Science, 252:1556.PubMedCrossRefGoogle Scholar
  54. Senft, S.L. and Woolsey, T.A., 1991a, Mouse barrel cortex viewed as Dirichlet domains, Cerebral Cortex, 1: 348.PubMedCrossRefGoogle Scholar
  55. Senft, S.L. and Woolsey, T.A., 1991b, Computer-aided analysis of thalamocortical afferent ingrowth, Cerebral Cortex, 1:336.PubMedCrossRefGoogle Scholar
  56. Senft, S.L. and Woolsey, T.A., 1991c, Growth of thalamic afferents into mouse barrel cortex, Cerebral Cortex, 1:308.PubMedCrossRefGoogle Scholar
  57. Simons, D.J., 1978, Response properties of vibrissa units in rat SI somatosensory neocortex, J. Neurophysiol., 41:798.PubMedGoogle Scholar
  58. Simons, D.J. and Woolsey, T.A., 1979, Functional organization in mouse barrel cortex, Brain Res., 165:327.PubMedCrossRefGoogle Scholar
  59. Simons, D.J., 1983, Multi-whisker stimulation and its effects on vibrissa units in rat SmI barrel cortex, Brain Res., 276:178.PubMedCrossRefGoogle Scholar
  60. Simons, D.J. and Woolsey, T.A., 1984, Morphology of Golgi-Cox impregnated barrel neurons in rat SmI cortex, J. Comp. Neurol., 230:119.PubMedCrossRefGoogle Scholar
  61. Simons, D.J., Durham, D. and Woolsey, T.A., 1984, Functional organization of mouse and rat SmI barrel cortex following vibrissal damage on different postnatal days, Somatosensory Res., 1:207.CrossRefGoogle Scholar
  62. Simons, D.J., 1985, Temporal and spatial integration in the rat SI vibrissa cortex, J. Neurophysiol., 54:615.PubMedGoogle Scholar
  63. Simons, D.J. and Carvell, G.E., 1989, Thalamocortical response transformation in the rat vibrissa/barrel system, J. Neurophysiol., 61:311.PubMedGoogle Scholar
  64. Steindler, D.A., O’Brien, T.F., Laywell, E., Harrington, K., Fassner, A., and Schachner, M., 1990, Boundaries during normal development: in vivo and in vitro studies of glia and glycoconjugates, Exp. Neurol., 109:35.PubMedCrossRefGoogle Scholar
  65. Van der Loos, H. and Woolsey, T.A., 1973, Somatosensory cortex: structural alterations following early injury to sense organs, Science., 179:395.PubMedCrossRefGoogle Scholar
  66. Van der Loos, H., Welker, E., Dörfl, J., and Rumo, G., 1986, Selective breeding for variation in patterns of mystacial vibrissae of mice, J. Hered., 77:66.PubMedGoogle Scholar
  67. Welker, C., Receptive fields of barrels in the somatosensory neocortex of the rat, J. Comp. Neurol., 166:173.Google Scholar
  68. Welker, W.I., 1964, Analysis of sniffing of the albino rat, Behaviour, 22:223.CrossRefGoogle Scholar
  69. Welker, C., 1976, Receptive fields of barrels in the somatosensory neocortex of the rat, J. Comp. Neurol., 166:173.PubMedCrossRefGoogle Scholar
  70. White, E.L., 1989, “Cortical Circuits: Synaptic Organization of the Cerebral Cortex — Structure, Function, and Theory,” Birkhäuser, Boston.Google Scholar
  71. White, E.L., 1991, Identified neurons in mouse SmI cortex which are post-synaptic to thalamocortical axon terminals: a combined Golgi-electron microscopic and degeneration study, J. Comp. Neurol., 181:627.CrossRefGoogle Scholar
  72. Wong-Riley, M., 1979, Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry, Brain Res., 171:11.PubMedCrossRefGoogle Scholar
  73. Woolsey, C.N., 1952, Patterns of localization in sensory and motor areas of the cerebral cortex, in: “The Biology of Mental Health and Disease,” Hoeber, New York.Google Scholar
  74. Woolsey, T.A., 1967, Somatosensory, auditory and visual cortical areas in the mouse, Johns Hopk. Med. J., 121:91.Google Scholar
  75. Woolsey, T.A. and Van der Loos, H., 1970, The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex: the description of a cortical field composed of discrete cytoarchitectonic units, Brain Res., 17:205.PubMedCrossRefGoogle Scholar
  76. Woolsey, T.A., Dierker, M.L. and Wann, D.F., 1975, Mouse SmI cortex: qualitative and quantitative classification of Golgi-impregnated barrel neurons, Proc. Natl. Acad. Sci. USA, 72:2165.PubMedCrossRefGoogle Scholar
  77. Woolsey, T.A., 1983, Gerard award presentation, Neurosci. Newsletter, 14(4):5.Google Scholar
  78. Woolsey, T.A., 1990, Peripheral alteration and somatosensory development, in: “Development of Sensory Systems in Mammals”, J. Coleman, ed., Wiley, New York.Google Scholar
  79. Woolsey, T.A. and Rovainen, C.M., 1991, Whisker barrels: a model for direct observation of changes in the cerebral microcirculation with neuronal activity, in: “Alfred Benzon Symposium No. 31, Brain Work II,” D.H. Ingvar, N.A. Lassen, M.E. Raichle and L. Friberg, eds., Munksgaard: Copenhagen.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Thomas A. Woolsey
    • 1
  1. 1.James L.O’Leary Division of Experimental Neurology and Neurological Surgery, Department of Neurology and Neurological SurgeryWashington University School of MedicineSt. LouisUSA

Personalised recommendations