Choline Acetyltransferase in the Rat Cochlear Nuclei: Immunolocalization with a Monoclonal Antibody

  • Douglas E. Vetter
  • Costantino Cozzari
  • Boyd K. Hartman
  • Enrico Mugnaini
Part of the NATO ASI series book series (NSSA, volume 239)


The cochlear nuclear complex (CoN) contains several populations of neurons that are highly diverse not only with respect to morphological features but also physiological responses to sound. With few exceptions, morphologically and functionally distinct cell types are differentially distributed in the anteroventral (AVCoN), posteroventral (PVCoN) and dorsal (DCoN) divisions of the CoN. With the advent of intracellular injection of tracers coupled with microelectrode recording, physiological response patterns can be more precisely correlated with individual cell classes within these subdivisions, increasing the need for extensive information on neurocytological features. In order to more fully describe the transformations of sound stimuli performed in the auditory centers, it is helpful to correlate the ultrastructural and chemical phenotypes of the neurons, especially those related to synapses, and the molecules involved in neurotransmission. Immunocytochemical methods have proven invaluable in this respect, because they afford the localization of special molecules not only at the regional level, as obtained with biochemical micromethods, but also at the cellular and subcellular levels.


Cochlear Nucleus Ventral Cochlear Nucleus Superior Olivary Complex Trapezoid Body Octopus Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J.C., 1981, Heavy metal intensification of DAB-based HRP reaction product., J. Histochem. Cytochem., 29:775.PubMedCrossRefGoogle Scholar
  2. Adams, J.C., and Mugnaini, E., 1987 Patterns of glutamate decarboxylase immunostaining in the feline cochlear nuclear complex studied with silver enhancement and electron microscopy., J. Comp. Neurol., 262:375–401.PubMedCrossRefGoogle Scholar
  3. Beaulieu, C. and Somogyi, P., 1991, Enrichment of cholinergic terminals on GABAergic neurons and coexistence of immunoreactive GABA and choline acetyltransferase in the same synaptic terminals in the striate cortex of the cat., J. Comp. Neurol., 304:666–680.PubMedCrossRefGoogle Scholar
  4. Benson, T.E. and Brown, M.C., 1990, Synapses formed by olivocochlear axon branches in the mouse cochlear nucleus., J. Comp. Neurol., 295:52–70.CrossRefGoogle Scholar
  5. Brown, M.C., Pierce, S., and Berglund, A.M., 1991, Cochlear-nucleus branches of thick (medial) olivocochlear fibers in the mouse: A cochleotopic projection., J. Comp. Neurol., 303:300–315.PubMedCrossRefGoogle Scholar
  6. Caspary, D., 1986, Cochlear nuclei: Functional neuropharmacology of the principle cell types., in: “Neurobiology of Hearing: The Cochlea”, R.A. Altschuler, D.W. Hoffman, and R.P. Bobbin, eds., Raven Press, New York.Google Scholar
  7. Caspary, D.M., Havey, D.C. and Faingold, C.L., 1983, Effects of acetylcholine on cochlear nucleus neurons., Exp. Neurol., 82:491–498.PubMedCrossRefGoogle Scholar
  8. Comis, S.D. and Davies, W.E., 1969, Acetylcholine as a transmitter in the cat auditory system., J. Neurochem., 16:423–429.PubMedCrossRefGoogle Scholar
  9. Cozzari, C., Howard, J., and Hartman, B., 1990, Analysis of epitopes on choline acetyltransferase (ChAT) using monoclonal antibodies (Mabs)., Soc Neurosci. Abst., 16:200.Google Scholar
  10. Cozzari, C. and Hartman, B.K., 1992, High yield purification of choline acetyltransferase and production of high affinity monoclonal antibodies., Eur. J. Biochem., in press.Google Scholar
  11. Dunn, M.E., Vetter, D.E., Berrebi, A.S., Krider, H.M., and Mugnaini, E., 1992, The mossy fiber-granule cell-cartwheel cell system in the mammalian cochlear nuclear complex, in: “Advances in Speech Hearing and Language Processing, Volume III, Cochlear Nucleus: Structure and Function in relation to Modelling”, W.A. Ainsworth, E.F. Evans, and CM. Hackney, eds., JAI Press Ltd, London.Google Scholar
  12. Faye-Lund, H., 1986, Projection from the inferior colliculus to the superior olivary complex in the albino rat., Anat. and Embryol., 175:35–52.CrossRefGoogle Scholar
  13. Frostholm, A. and Rotter, A., 1986, Autoradiographic localization of receptors in the cochlear nucleus of the mouse, Brain Res. Bull., 16:189–203.PubMedCrossRefGoogle Scholar
  14. Godfrey, D.A., Park-Hellendall, J.L., Dunn, J.D., and Ross, C.D., 1987, Effect of olivocochlear bundle transection on choline acetyltransferase activity in the rat cochlear nucleus, Hearing Res., 28:237–251.CrossRefGoogle Scholar
  15. Godfrey, D.A., Parli, J.A., Dunn, J.D., and Ross, CD., 1988, Neurotransmitter microchemistry of the cochlear nucleus and superior olivary complex, in: “Auditory Pathways”, J. Syka and R.B. Masterton, eds., Plenum Publishing, New York.Google Scholar
  16. Godfrey, D.A., Beranek, K.L., Carlson, L., Parli, J.A., Dunn, J.D., and Ross, C.D., 1990, Contribution of centrifugal innervation to choline acetyl-transferase activity in the cat cochlear nucleus, Hearing Res., 49:259–280.CrossRefGoogle Scholar
  17. Harrison, J.M., and Irving, R., 1965, The anterior ventral cochlear nucleus, J.Comp. Neurol., 124:15–42.PubMedCrossRefGoogle Scholar
  18. Harrison, J.M., and Irving, R., 1966, The organization of the posterior ventral cochlear nucleus in the rat, J. Comp. Neurol., 126:391–402.PubMedCrossRefGoogle Scholar
  19. Kromer, L.F., and Moore, R.Y., 1976, Cochlear nucleus innervation by central norepinephrine neurons in the rat, Brain Res., 118:531–537.PubMedCrossRefGoogle Scholar
  20. Kromer, L.F., and Moore, R.Y., 1980, Norepinephrine innervation of the cochlear nuclei by locus coeruleus neurons in the rat, Anat. Embryol., 158:227–244.PubMedCrossRefGoogle Scholar
  21. Levitt, P. and Moore, R. V., 1979, Origin and organization of brain stem catecholamine innervation in the rat, J. Comp. Neurol., 186:505–528.PubMedCrossRefGoogle Scholar
  22. Levitt, P. and Moore, R. V., 1980, Organization of the brain stem noradrenalin hyperinnervation following neonatal 6-hydroxy-dopamine treatment in rat, Anat. Embryol., 158:133–150.PubMedCrossRefGoogle Scholar
  23. Lorente de Nó, R., 1981, The Primary Acoustic Nuclei, Raven Press, New York, N.Y.Google Scholar
  24. McDonald, D.M. and Rasmussen, G.L., 1971, Ultrastructural characteristics of synaptic endings in the cochlear nucleus having acetylcholinesterase activity, Brain Res., 28:1–18.PubMedCrossRefGoogle Scholar
  25. Merchán, M.A., Collia, F., López, D.E., and Saldaña, E., 1988, Morphology of cochlear root neurons in the rat, J. Neurocytol., 17:711–725.PubMedCrossRefGoogle Scholar
  26. Moore, J.K., 1988, Cholinergic, GABA-ergic, and noradrenergic input to cochlear granule cells in the guinea pig and monkey, in: “Auditory Pathways”, J. Syka and R.B. Masterton, eds., Plenum Publishing, New York.Google Scholar
  27. Morley, B.J., Lorden, J.F., Brown, G.B., Kemp, G.E., and Bradley, R.J., 1977, Regional distribution of nicotinic acetylcholine receptor in rat brain, Brain Res., 134:161–166.PubMedCrossRefGoogle Scholar
  28. Mugnaini, E., Osen, K.K., Dahl, A-L., Friedrich, V.L. Jr., and Körte, G., 1980a, Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat and mouse, J. Neurocytol., 9:537–570.PubMedCrossRefGoogle Scholar
  29. Mugnaini, E., Warr, B.W., and Osen, K.K. 1980b, Distribution and light microscopic features of granule cells in the cochlear nuclei of cat, rat, and mouse, J. Comp. Neurol., 191:581–606.PubMedCrossRefGoogle Scholar
  30. O’Malley, D., and Masland, R.H., 1989, Co-release of acetylcholine and gamma-aminobutyric acid by a retinal neuron, Froc. Natl. Acad. Sci. USA, 86:3414–3418.CrossRefGoogle Scholar
  31. Osen, K.K., 1969, Cytoarchitecture of the cochlear nuclei in the cat, J. Comp. Neurol., 136:453–484.PubMedCrossRefGoogle Scholar
  32. Osen, K.K., López, D.E., Slyngstad, T.A., Ottersen, O.P., and Storm-Mathisen, J., 1991, GABA-like and glycine-like immunoreactivities of the cochlear root nucleus in rat, J. Neurocytol., 20:17–25.PubMedCrossRefGoogle Scholar
  33. Osen, K.K., Mugnaini, E., Dahl, A-L., and Christiansen, A.H., 1984, Histochemical localization of acetylcholinesterase in the cochlear nuclear and superior olivary nuclei. A reappraisal with emphasis on the cochlear granule cell system, Arch. ltal. Biol., 122:169–212.Google Scholar
  34. Osen, K.K., Ottersen, O.P., and Storm-Mathisen, J., 1990, Colocalization of glycine-like and GABA-like immunoreactivities. A semiquantitative study of individual neurons in the dorsal cochlear nucleus of cat, in: “Glycine neurotransmission”, O.P. Ottersen and J. Storm-Mathisen, eds., J. Wiley and Sons, New York, N.Y.Google Scholar
  35. Osen, K.K., and Roth, K., 1969, Histochemical localization of cholinesterases in the cochlear nuclei of the cat, with notes on the origin of acetyl-cholinesterase-positive afferents and the superior olive, Brain Res., 16:165–185.PubMedCrossRefGoogle Scholar
  36. Ottersen, O P., and Storm-Mathisen, J., 1984, Neurons containing and accumulating transmitter aminoacids, in: “Handbook of Chemical Neuroanatomy”, A. Björklund, T. Hökfelt, and M.J. Kuhar, eds., vol 3, part II, Elsevier, Amsterdam.Google Scholar
  37. Ross, M.D., and Burkel, W., 1971, Electron microscopic observations of the nucleus, glial dome, and meninges of the rat acoustic nerve, Am. J. Anat., 130:73–92PubMedCrossRefGoogle Scholar
  38. Ryan, A.F., Keithley, E.M., Wang, Z-X., Schwartz, LR., 1990, Collaterals from lateral and medial olivocochlear efferent neurons innervate different regions of the cochlear nucleus and adjacent brainstem, J. Comp. Neurol., 300:572–582.PubMedCrossRefGoogle Scholar
  39. Schwartz, LR., 1984, Autoradiographic studies of amino acid labeling of neural elements in the auditory system, in: “Auditory Biochemistry”, D.G. Drescher, ed., Charles Thomas, Springfield.Google Scholar
  40. Todd, A.J., 1991, Immunohistochemical evidence that acetylcholine and glycine exist in different populations of GABAergic neurons in lamina III of the rat spinal dorsal horn, Neuroscience, 44:741–746.PubMedCrossRefGoogle Scholar
  41. Vetter, D.E., Adams, J.C., and Mugnaini, E., 1991a, Chemically distinct rat olivocochlear neurons, Synapse, 7:21–43.PubMedCrossRefGoogle Scholar
  42. Vetter, D.E., Cozzari, C., Hartman, B.K., and Mungnaini, E., 1991b, Comparison between AChE histochemical staining and ChAT immunocytochemistry in the rat cochlear nuclei, Soc. Neurosci. Abstr., 17:302.Google Scholar
  43. Wamsley, J.K., Zarbin, M.A., and Kuhar, M.J., 1984, Distribution of muscarinic cholinergic high and low affinity agonist binding sites: A light microscopic autoradiographic study, Brain Res. Bull., 12:233–243.PubMedCrossRefGoogle Scholar
  44. Whipple, M.R. and Drescher, D.G., 1984, Muscarinic receptors in the cochlear nucleus and auditory nerve of the guinea pig, J. Neurochem., 43:192–198.PubMedCrossRefGoogle Scholar
  45. Whitfield, I.C. 1968, Centrifugal control mechanisms of the auditory pathway, in: “Hearing Mechanisms in Vertebrates”, A.V.S. De Reuck and J. Knight, eds., Churchill, London.Google Scholar
  46. Whitfield, I.C., and Comis, S.O., 1968, A reciprocal gating mechanism in the auditory pathway, in: “Cybernetic Problems in Bionics”, H.L. Oestricher and D.R. Moore, eds., Gordon and Breach, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Douglas E. Vetter
    • 1
  • Costantino Cozzari
    • 2
  • Boyd K. Hartman
    • 3
  • Enrico Mugnaini
    • 1
  1. 1.Laboratory of Neuromorphology, Graduate Degree Program in Biobehavioral SciencesUniversity of ConnecticutStorrsUSA
  2. 2.Istituto di Biologia CellulareC.N.R.RomaItaly
  3. 3.Department of PsychiatryUniversity of MinnesotaMinneapolisUSA

Personalised recommendations