Skip to main content

Cell Birth, Formation of Efferent Connections, and Establishment of Tonotopic Order in the Rat Cochlear Nucleus

  • Chapter

Part of the book series: NATO ASI series ((NSSA,volume 239))

Abstract

The development of the cochlear nucleus (CN) involves proliferation of cells, migration of postmitotic neuroblasts to their final destinations, neurite outgrowth, synapse formation, and cell death. Ultimately, these events lead to the establishment of the high degree of topographic organization observed in the adult. The auditory system of rats is immature at birth which makes this species preferable for developmental studies. Physiological hearing in rats begins about two weeks after birth. The outer ear canals do not open before postnatal day 12 (P12), and first auditory brainstem responses can be reliably recorded at P12–P14 (Jewett and Romano,’ 72; Tokimoto et al.,’ 77; Blatchley et al.,’ 87). Since gestation in rats lasts 22 days (i.e. birth usually occurs at embryonic day 22, E22 = PO), there is a period of several weeks until the onset of hearing occurs, during which the above mentioned major developmental events must take place.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitkin, L.M. and Moore, D.R., 1975, Inferior coUiculus. IL Development of tuning characteristics and tonotopic Organisation in central nucleus of the neonatal cat, J. Neurophysiol., 38:1208–1216.

    PubMed  CAS  Google Scholar 

  • Altman, J. and Bayer, S.A., 1980, Development of the brain stem in the rat. III. Thymidine-radiographic study of the time of origin of neurons of the vestibular and auditory nuclei of the upper medulla, J. Comp. Neurol., 194:877–904.

    Article  PubMed  CAS  Google Scholar 

  • Altman, J. and Bayer, S.A., 1981, Time of origin of neurons of the rat inferior colliculus and the relations between cytogenesis and tonotopic order in the auditory pathway, Exp. Brain Res. 42:411–423.

    PubMed  CAS  Google Scholar 

  • Blatchley, B.J., Cooper, W.A., and Coleman, J.R., 1987, Development of auditory brainstem response to tone pip stimuli in the rat, Dev. Brain Res., 32:75–84.

    Article  Google Scholar 

  • Brunso-Bechtold, J.K., Henkel, C.K., and Vinsant, S.L., 1990, Embryonic development of the mammalian hindbrain auditory decussation, Soc. Neurosci. Abstr., 16:298.1.

    Google Scholar 

  • Coleman, J.R., 1990, Development of auditory system structures, in: “Development of Sensory Systems in Mammals”, J.R. Coleman, ed, Wiley, New York.

    Google Scholar 

  • Collia, F., Lopez, D.E., Malmierca, M.S., and Merchan, M., 1988, Study with horseradish peroxidase (HRP) of the connections between the cochlear nuclei and the inferior colliculus of the rat, in: “Auditory Pathway. Structure and function”, J. Syka and R.B. Masterton, eds, Plenum Press, New York, London.

    Google Scholar 

  • Dardennes, R., Jarreau, P.H., and Meininger, V., 1984, A quantitative Golgi analysis of the postnatal maturation of dendrites in the central nucleus of the inferior colliculus of the rat, Dev. Brain Res., 16:159–169.

    Article  Google Scholar 

  • Echteier, S.M., Arjmand, E., and Dallos, P., 1989, Developmental alterations in the frequency map of the mammalian cochlea, Nature, 341:147–149.

    Article  Google Scholar 

  • Friauf, E. and Kandier, K., 1990, Auditory projections to the inferior colliculus of the rat are present by birth, Neurosci. Lett., 120:58–61.

    Article  PubMed  CAS  Google Scholar 

  • Friauf, E. and Ostwald, J., 1988, Divergent projections of physiologically characterized rat ventral cochlear nucleus neurons as shown by intra-axonal injection of horseradish peroxidase, Exp. Brain Res. 73:263–284.

    Article  PubMed  CAS  Google Scholar 

  • Godement, P., Vanselow, J., Thanos, S., and Bonhoeffer, F., 1987, A study in developing visual systems with a new method of staining neurones and their processes with carbocyanine dyes in fixed tissue, Development, 101:697–713.

    PubMed  CAS  Google Scholar 

  • Hackney, C.M., Osen, K.K., and Kolston, J., 1990, Anatomy of the cochlear nuclear complex of guinea pig, Anat. Embryol., 182:123–149.

    Article  PubMed  CAS  Google Scholar 

  • Harris, D.M. and Dallos, P., 1984, Ontogenetic changes in frequency mapping of a mammalian ear, Science, 225:741–743.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, J.M. and Irving, R., 1966, Ascending connections of the anterior ventral cochlear nucleus in the rat, J. Comp. Neurol., 126:51–64.

    Article  PubMed  CAS  Google Scholar 

  • Hashisaki, G.T. and Rubel, E.W., 1989, Effects of unilateral cochlea removal on anteroventral cochlear nucleus neurons in developing gerbils, J. Comp. Neurol., 283:465–473.

    Article  Google Scholar 

  • Honig, M.G. and Hume, R.I., 1989, Dil and DiO: Versatile fluorescent dyes for neuronal labelling and pathway tracing, Trends Neurosci., 12:333–341.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M., 1978, Developmental Neurobiology, Plenum Press, New York, London.

    Google Scholar 

  • Jewett, D.L. and Romano, M.N., 1972, Neonatal development of auditory system potentials averaged from the scalp of rat and cat, Brain Res., 36:101–115.

    Article  PubMed  CAS  Google Scholar 

  • Kaltenbach, J.A. and Lazor, J., 1991, Tonotopic maps obtained from the surface of the dorsal cochlear nucleus of the hamster and the rat, Hearing Res., 51:149–160.

    Article  CAS  Google Scholar 

  • Kandier, K. and Friauf, E., 1991, Development of efferent connections of the cochlear nucleus in the rat, Soc. Neurosci. Abstr., 17:182.9.

    Google Scholar 

  • Kitzes, L.M., 1990, Development of auditory system physiology, in: “Development of Sensory Systems in Mammals”, J. Coleman, ed, Wiley, New York.

    Google Scholar 

  • Knudsen, E., Knudsen, P., and Esterly, S., 1982, Early auditory experience modifies sound localization in barn owls, Nature, 295:238–240.

    Article  Google Scholar 

  • Lippe, W. and Rubel, E.W., 1985, Ontogeny of tonotopic organization of brain stem auditory nuclei in the chicken: Implications for development of the place principle, J. Comp. Neurol., 237:273–289.

    Article  PubMed  CAS  Google Scholar 

  • Manley, G.A., Brix, J., and Kaiser, A., 1987, Developmental stability of the tonotopic organization of the chick’s basilar papilla, Science, 237:655–656.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell, B. and Coleman, J.R., 1989, Differential timetable of projections into the developing inferior colliculus in rat, Soc. Neurosci. Abstr., 15:745.

    Google Scholar 

  • Miller, M.W. and Nowakowski, R.S., 1988, Use of bromodeoxyuridine-immunohistochemistry to examine the proliferation, migration and time of origin of cells in the central nervous system, Brain Res. 457:44–52.

    Article  PubMed  CAS  Google Scholar 

  • Moore, D.R., 1986, Critical periods for binaural interaction and spatial representation, Acta Otolaryngol. (Stockh.) Suppl., 429:51–55.

    Article  CAS  Google Scholar 

  • Morest, D.K., 1968, The growth of synaptic endings in the mammalian brain: A study of the calyces of the trapezoid body, Z. Anat. Entwicklungs-Gesch., 127:201–220.

    Article  CAS  Google Scholar 

  • Morgan, J.I. and Curran, T., 1991, Stimulus-transcription coupling in the nervous system: Involvement of the inducible proto-oncogenes fos and jun, Annu. Rev. Neurosci., 14:421–451.

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini, E., Osen, K.K., Dahl, A.-L., Friedrich Jr, V.L., and Korte, G., 1980, Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nucleus complex of cat, rat and mouse, J. Neurocytol., 9:537–570.

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini, E., Warr, W.B., and Osen, K.K., 1980, Distribution and light microscopic features of granule cells in the cochlear nuclei of cat, rat and mouse, J. Comp. Neurol., 191:58–606.

    Article  Google Scholar 

  • Müller, M., 1990, Quantitative comparison of frequency representation in the auditory brainstem nuclei of the gerbil, “Pachyuromys duprasi”, Exp. Brain Res., 81:140–149.

    Article  PubMed  Google Scholar 

  • Müller, M., Roth, B., and Bruns, V., 1990, Postnatal development of the cochlea in the rat: Morphology and tonotopy, in “Brain-Perception-Cognition. Proc. 18th Göttingen Neurobiol. Conf.” N. Eisner and G. Roth, eds, Thieme, Stuttgart, New York.

    Google Scholar 

  • Neises, G.R., Mattox, D.E., and Gulley, R.L., 1982, The maturation of the endbulb of Held in the rat anteroventral cochlear nucleus, Anat. Rec., 204:271–279.

    Article  PubMed  CAS  Google Scholar 

  • Oertel D. and Wu, S.H., 1989, Morphology and physiology of cells in slice preparations of the dorsal cochlear nucleus of mice, J. Comp. Neurol., 283:228–247.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, D.L., 1984, Dorsal cochlear nucleus projections to the inferior colliculus in the cat: A light and electron microscopic study, J. Comp. Neurol. 224:155–172.

    Article  PubMed  CAS  Google Scholar 

  • Rogowski., B.A., and Feng, A.S., 1981, Normal postnatal development of medial superior olivary neurons in the albino rat: A Golgi and Nissl study, J. Comp. Neurol., 196:85–97.

    Article  PubMed  CAS  Google Scholar 

  • Romand, R. and Ehret, G., 1990, Development of tonotopy in the inferior colliculus. I. Electrophysiological mapping in house mice, Dev. Brain Res., 54:221–234.

    Article  CAS  Google Scholar 

  • Rubel, E.W., 1984, Ontogeny of auditory system function, Annu. Rev. Physiol., 46:213–229.

    Article  PubMed  CAS  Google Scholar 

  • Rübsamen, R. and Schäfer, M., 1990, Ontogenesis of auditory fovea representation in the inferior colliculus of the Sri Lankan rufous bat, “Rhinolophus rouxi”, J. Comp. Physiol. A, 167:757–769.

    PubMed  Google Scholar 

  • Rübsamen, R., Neuweiler, G., and Marimuthu, G., 1989, Ontogenesis of tonotopy in inferior colliculus of a hipposiderid bat reveals postnatal shift in frequency-place code, J. Comp. Physiol. A, 165:755–769.

    Article  PubMed  Google Scholar 

  • Ryan, A.F. and Woolf, N.K., 1988, Development of tonotopic representation in the central auditory system of the mongolian gerbil: a 2-deoxyglucose study, Dev. Brain Res., 41:61–70.

    Article  Google Scholar 

  • Ryan, A.F., Furlow, Z., Woolf, N.K., and Keithley, E.M., 1988, The spatial representation of frequency in the rat dorsal cochlear nucleus and inferior colliculus, Hearing Res., 36:181–190.

    Article  CAS  Google Scholar 

  • Ryan, A.F., Woolf, N.K., and Sharp, F.R., 1982, Tonotopic organization in the central auditory pathway of the mongolian gerbil: a 2-deoxyglucose study, J. Comp. Neurol., 207:369–380.

    Article  PubMed  CAS  Google Scholar 

  • Sandell, J.H., and Masland, R.H., 1988, Photoconversion of some fluorescent markers to a diaminobenzidine product, J. Histochem. Cytochem., 26:555–559.

    Article  Google Scholar 

  • Sanes, D.H. and Constantine-Paton, M., 1983, Altered activity patterns during development reduce neural tuning, Science, 221:1183–1185.

    Article  PubMed  CAS  Google Scholar 

  • Sanes, D.H. and Constantine-Paton, M., 1985, The sharpening of frequency tuning curves requires patterned activity during development in the mouse, “Mus musculus”, J. Neurosci., 5:1152–1166.

    PubMed  CAS  Google Scholar 

  • Sanes, D.H., Merickel, M., and Rubel, E., 1989, Evidence for an alteration of the tonotopic map in the gerbil cochlea during development, J. Comp. Neurol., 279:436–444.

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer, L. and Cant, N.B., 1985, Differentiation of the giant and fusiform cells in the dorsal cochlear nucleus of the hamster, Dev. Brain Res., 20:69–82.

    Article  Google Scholar 

  • Shatz, C.J., Ghosh, A., McConnell, S.K., Allendoerfer, K.L., Friauf, E., and Antonini, A., 1991, Subplate neurons and the development of neocortical connections, in: “Development of the Visual Cortex”, D.M. Lam and C.J. Shatz, eds, MIT Press.

    Google Scholar 

  • Sheng, M. and Greenberg, M.E., 1990, The regulation and function of c-fos and other immediate early genes in the nervous system, Neuron, 4:477–485.

    Article  PubMed  CAS  Google Scholar 

  • Sidman, R.L., 1970, Autoradiographic methods and principles for study of the nervous system with thymidine-H3, in: “Contemporary Research Methods in Neuroanatomy”, W.J.H. Nauta and S.O.E. Ebbeson, eds, Springer, New York.

    Google Scholar 

  • Taber-Pierce, E., 1967, Histogenesis of the dorsal and ventral cochlear nuclei in the mouse: an autoradiographic study, J. Comp. Neurol., 131:27–54.

    Article  Google Scholar 

  • Tokimoto, T., Osako, S., and Matsuura, S., 1977, Development of auditory evoked cortical and brain stem responses during the early postnatal period in the rat, Osaka City Med. J., 23:141–153.

    PubMed  CAS  Google Scholar 

  • Weber, F., Zillus, H., and Friauf, E., 1991, Neuronal birth in the rat auditory brainstem, in: “Synapse-Transmission-Modulation. Proc. 19th Göttingen Neurobiology Conference”. N. Eisner and H. Penzlin, eds, Thieme, Stuttgart, New York.

    Google Scholar 

  • Webster, D.B., 1983, A critical period during postnatal auditory development of mice, Int. J. Pediatr. Otorhinolaryngol. 6:107–118.

    Article  PubMed  CAS  Google Scholar 

  • Willard, F.H. and Martin, G.F., 1986, The development and migration of large multipolar neurons into the cochlear nucleus of the North American opossum, J. Comp. Neurol., 248:119–132.

    Article  PubMed  CAS  Google Scholar 

  • Woolf, N.G. and Ryan, A.F., 1985, Ontogeny of neural discharge patterns in the ventral cochlear nucleus of the mongolian gerbil, Dev. Brain Res., 17:131–147.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Friauf, E., Kandler, K. (1993). Cell Birth, Formation of Efferent Connections, and Establishment of Tonotopic Order in the Rat Cochlear Nucleus. In: Merchán, M.A., Juiz, J.M., Godfrey, D.A., Mugnaini, E. (eds) The Mammalian Cochlear Nuclei. NATO ASI series, vol 239. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2932-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2932-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6273-9

  • Online ISBN: 978-1-4615-2932-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics