Advertisement

Inhibitory Amino Acid Synapses and Pathways in the Ventral Cochlear Nucleus

  • Richard A. Altschuler
  • José M. Juiz
  • Susan E. Shore
  • Sanford C. Bledsoe
  • Robert H. Helfert
  • Robert J. Wenthold
Part of the NATO ASI series book series (NSSA, volume 239)

Abstract

The processing of auditory information requires neurons to fire at a rapid rate. Hair cells can, for example, respond to tones by oscillations of membrane potential at rates as high as many hundred times per second. This response rate firing conveys important information about intensity and frequency and so is maintained throughout the initial processing in the auditory brain stem. The first synapse through which response rate information must be accurately passed is between the inner hair cells and the auditory nerve. It is not surprising that evidence supports an excitatory amino acid transmitter and an ionotropic excitatory amino acid receptor at this synapse (Bledsoe et al.,’ 88; Altschuler et al.,’ 89), since this is one of the few known excitatory transmitter — receptor combinations capable of such speed. The next synapse in the ascending auditory pathway is obligatory, in the cochlear nucleus (CN). Firing rate information transfer is maintained at many auditory nerve — CN synapses, leading to the expectation that these synapses would also have an excitatory transmitter — receptor combination capable of considerable speed. Much evidence suggests that an excitatory amino acid is the auditory nerve transmitter (chapter in this volume by Juiz et al.; Wenthold,’ 91 and Caspary,’ 86) and that most CN projection neurons receive this input via an ionotropic excitatory amino acid receptor (see Wenthold et al. and Morest, chapters this volume), currently termed a glutamate receptor (GluR).

Keywords

Excitatory Amino Acid Auditory Nerve Cochlear Nucleus Ventral Cochlear Nucleus Inhibitory Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J.C. and Mugnaini, E., 1985, Patteras of immunostaining with antisera to peptides in the auditory brainstem of the cat, Soc. Neurosci. Abstr., 11:32.Google Scholar
  2. Altschuler, R.A., Sheridan, C.E., Horn, J.W. and Wenthold, R.J., 1989, Immunocytochemical localization of glutamate immunoreactivity in the guinea pig cochlea, Hearing Res., 42:167–74.CrossRefGoogle Scholar
  3. Altschuler, R.A., Hoffman, D.W. and Wenthold, R.J., 1986, Neurotransmitters of the cochlea and cochlear nucleus: immunocytochemical evidence, Am. J. Otolaryngol. 7:100–106.PubMedCrossRefGoogle Scholar
  4. Altschuler, R.A., Betz, H., Parakkal, M.H., Reeks, K.A. and Wenthold, R.J., 1986, Identification of glycinergic synapses in the cochlear nucleus through immunocytochemical localization of the postsynaptic receptor, Brain Res., 369:316–320.PubMedCrossRefGoogle Scholar
  5. Bledsoe, S.C., Bobbin, R.P. and Puel, J.-L., 1988, Neurotransmission in the inner ear, in: “Physiology of the Ear”, A.F. Jahn and J. Santos-Sacchi, eds., Raven Press, New York.Google Scholar
  6. Bormann, J., 1988, Electrophysiology of GABAA and GABAB receptor subtypes, Trends in Neurosci., 11:112–116.CrossRefGoogle Scholar
  7. Cant, N.B., 1991, Projections to the lateral and medial superior olivary nuclei from the spherical and globular bushy cells of the anteroventral cochlear nucleus, in: “Neurobiology of Hearing: The Central Auditory System”, R.A. Altschuler, R.P. Bobbin, B.M. Clopton, and D.W. Hoffman, eds., Raven Press, New York.Google Scholar
  8. Cant, N.B. and Morest, D.K., 1984, The structural basis for stimulus coding in the cochlear nucleus, in: “Hearing Sciences; Recent Advances”, C. Berlin, ed., College Hill Press, San Diego.Google Scholar
  9. Caspary, D.M., 1986, Cochlear nuclei: Functional neuropharmacology of the principal cell types, in: “Neurobiology of Hearing: The Cochlea”, R.A. Altschuler, D.W. Hoffmann and R.P. Bobbin, eds., Raven Press, New York.Google Scholar
  10. Caspary, D.M., Havey, D.C. and Faingold, C.L., 1979, Effects of microiontophoretically applied glycine and GABA on neuronal response patterns in the cochlear nuclei, Brain Res., 172:179–85.PubMedCrossRefGoogle Scholar
  11. Caspary, D.M., Rybak, L.P. and Faingold, C.L., 1984, Baclofen reduces tone-evoked activity of cochlear nucleus neurons, Hearing Res., 13:113–122.CrossRefGoogle Scholar
  12. Clopton, B.M. and Backoff, P.M., 1991, Spectrotemporal receptive fields of neurons in cochlear nucleus of guinea pig, Hearing Res., 52:329–344.CrossRefGoogle Scholar
  13. Comis, S.D., 1970, Centrifugal inhibitory processes affecting neurons in the cat cochlear nucleus, J. Physiol., 210:751–760.PubMedGoogle Scholar
  14. Frostholm, A. and Rotter, A., 1986, Autoradiographic localization of receptors in the cochlear nucleus of the mouse, Brain Res. Bull., 16:189–203.PubMedCrossRefGoogle Scholar
  15. Glendenning, K.K. and Baker, B.N., 1988, Neuroanatomical distribution of receptors for three potential inhibitory neurotransmitters in the brain stem auditory nuclei of the cat, J. Comp. Neurol., 275:288–308.PubMedCrossRefGoogle Scholar
  16. Godfrey, D.A., Parli, J.A., Dunn, J.D. and Ross, C.D., 1988, Neurotransmitter microchemistry of the cochlear nucleus and the superior olivary complex, in: “Auditory Pathways”, J. Syka, and R.L. Masterton, eds., Plenum Press, NY.Google Scholar
  17. Helfert, R.H., Bonneau, J.M., Wenthold, R.J. and Altschuler, R.A., 1989, GABA and glycine immunoreactivity in the guinea pig superior olivary complex, Brain Res., 501:269–286.PubMedCrossRefGoogle Scholar
  18. Helfert, R.H., Snead, C.R. and Altschuler, R.A., 1991, The ascending auditory pathways, in: “Neurobiology of Hearing: The Central Auditory System”, R.A. Altschuler, R.P. Bobbin, B.M. Clopton, and D.W. Hoffman, eds., Raven Press, New York.Google Scholar
  19. Iversen, L.L. and Kelly, J.S., 1975, Uptake and metabolism of gamma-aminobutyric acid by neurones and glial cells, Biochem. Pharmacol., 24:933–938.PubMedCrossRefGoogle Scholar
  20. Juiz, J.M., Helfert, R.H., Wenthold, R.J., De Blas, A.L. and Altschuler, R.A., 1989, Immunocytochemical localization of the GABAA/benzodiazepine receptor in the guinea pig cochlear nucleus: evidence for receptor localization heterogeneity, Brain Res., 504:173–179.PubMedCrossRefGoogle Scholar
  21. Juiz, J.M., Helfert, R.H., Bonneau, J.M., Wenthold, R.J. and Altschuler, R.A., Synaptic terminals and cell bodies immunoreactive for glycine or co-containing glycine and GABA immunoreactivities in the cochlear nucleus of the guinea pig: An ultrastructural immunogold study, J. Comp. Neurol., submitted.Google Scholar
  22. Juiz, J.M., Helfert, R.H., Bonneau, J.M., Wenthold, R.J. and Altschuler, R.A., 1989, Glycine immunoreactivity in the cochlear nucleus: Postembedding light and electron microscopic immunocytochemistry, Soc. Neurosci. Abst., 15:743.Google Scholar
  23. Juiz, J.M., Helfert, R.H., Bonneau, J.M., Wenthold, R.J. and Altschuler, R.A., 1990, Differential immunostaining of cell bodies and terminals in the cochlear nucleus by glutamate and GABA, ARO Abst., 13:56.Google Scholar
  24. Juiz, J.M., Albin, R.L., Helfert, R.H. and Altschuler, R.A., Distribution of GABAA and GABAB binding sites in the cochlear nucleus of the guinea pig, Brain Res., (submitted).Google Scholar
  25. Juiz, J.M., Helfert, R.H. and Altschuler, R.A., A simple procedure for silver intensification of immunocolloidal gold on ultrathin plastic sections, J. Neurosci. Methods, submitted.Google Scholar
  26. Levitan, E.S., Schofield, P.R., Burt, D.R., Rhee, L.M., Wisden, W., Köhler, M., Fujita, N., Rodriguez, H.F., Stephenson, A. and Darlison, M.G., 1988, Structural and functional basis for GABAA receptor heterogeneity, Nature, 335:76–79.PubMedCrossRefGoogle Scholar
  27. Lorente de Nó, R., 1981, “The primary acoustic nuclei”, R. Lorente de Nó, ed., Raven Press, New York.Google Scholar
  28. Luddens, H. and Wisden, W., 1991, Function and pharmacology of multiple GABAA receptor subunits, TIPS, 12:49–51.PubMedGoogle Scholar
  29. Malosio, M.L., Marqueze-Pouey, B., Kuhse, J. and Betz, H., 1991, Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain, EMBO 10:2401–9.Google Scholar
  30. Martin, M.R., 1983, The pharmacology of amino acid receptors and synaptic transmission in the cochlear nucleus, in: “Auditory Biochemistry”, D.G. Drescher, ed., Charles C. Thomas, Springfield.Google Scholar
  31. Moore, J.K., 1986, Cochlear nuclei: relationship to the auditory nerve, in: “Neurobiology of Hearing: The Cochlea”, R.A. Altschuler, D.W. Hoffman and R.P. Bobbin, eds., Raven Press, New York.Google Scholar
  32. Mugnaini, E. and Oertel, W.H., 1985, An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunocytochemistry, in “Handbook of Chemical Neuroanatomy, vol. 4: GABA and neuropeptides in the CNS”, A. Bjorklund and T. Hokfelt, eds., Elsevier, Amsterdam.Google Scholar
  33. Oberdorfer, M.D., Parakkal, M.H., Altschuler, R.A. and Wenthold, R.J., 1987, Co-localization of glycine and GABA in the cochlear nucleus, Soc. Neurosci. Abstr., pp. 544.Google Scholar
  34. Oberdorfer, M.D., Parakkal, M.H., Altschuler, R.A. and Wenthold, R.J., 1988, Ultrastructural localization of GABA-immunoreactive terminals in the anteroventral cochlear nucleus of the guinea pig, Hearing Res., 33:229–238.CrossRefGoogle Scholar
  35. Osen, K.K., 1969, The intrinsic organization of the cochlear nuclei, Acta Otolaryngol., 67:352–359.PubMedCrossRefGoogle Scholar
  36. Osen, K.K., Ottersen, O.P. and Storm-Mathissen, J., 1990, Co-localization of glycine-like and GABA-like immunoreactivities: A Semiquantitative study of individual neurons in the dorsal cochlear nucleus of cat, in: “Glycine neurotransmission”, O.P. Ottersen and J. Storm-Mathissen, eds., John Willey & Sons, London, pp. 417–45.Google Scholar
  37. Pritchett, D.B., Luddens, H. and Seeburg, P.H., 1989, Type I and type II GABAA. Benzodiazepine receptors produced in transfected cells, Science, 245:1389–1392.PubMedCrossRefGoogle Scholar
  38. Rhode, W.S., 1991, Physiological-morphological properties of the cochlear nucleus, in: “Neurobiology of Hearing: The Central Auditory System”, R.A. Altschuler, R.P. Bobbin, B.M. Clopton and D.W. Hoffman, eds., Raven Press, New York.Google Scholar
  39. Sakmann, B., Hamill, O.P. and Bormann, J., 1983, Patch-clamp measurements of elementary chloride currents activated by the putative inhibitory transmitters GABA and glycine in mammalian spinal neurons, J. Neural Transm., 18:83–95.Google Scholar
  40. Schwartz, A.M. and Gulley, R.L., 1978, Non-primary afferents to the principal cells of the rostral anteroventral cochlear nucleus of the guinea pig, Am. J. Anat., 153:489–508.PubMedCrossRefGoogle Scholar
  41. Schwartz, I.R., 1983, Autoradiographic studies of amino acid labeling of neural elements in the auditory brainstem, in: “Auditory Biochemistry”, D.G. Drescher, ed., Charles C. Thomas, SpringfieldGoogle Scholar
  42. Shore S.E., Helfert, R.H., Bledsoe, S.C., Altschuler, R.A. and Godfrey, D.A., 1991, Descending projection to the dorsal and ventral divisions of the cochlear nucleus in guinea pig, Hearing Res., 52:255–268.CrossRefGoogle Scholar
  43. Shore, S.E., Godfrey, D.A., Helfert, R.H., Altschuler, R.A. and Bledsoe, S.C. Jr., 1991, Connections between the cochlear nuclei in the guinea pig, Hearing Res., in press.Google Scholar
  44. Spangler, K.M. and Warr, W.B., 1991, The descending auditory system, in: “Neurobiology of Hearing: The Central Auditory System”, R.A. Altschuler, R.P. Bobbin, B.M. Clopton, and D.W. Hoffman, eds., Raven Press, New York.Google Scholar
  45. Tolbert, L.P. and Morest, D.K., 1982, The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: electron microscopy, Neurosci., 7:3053–3067.CrossRefGoogle Scholar
  46. Wenthold, R.J., Huie, D., Altschuler, R.A. and Reeks, K.A., 1987, Glycine immunoreactivity localized in the cochlear nucleus and superior olivary complex, Neurosci., 22:897–912.CrossRefGoogle Scholar
  47. Wenthold, R.J. and Martin, M.R., 1984, Neurotransmitters of the auditory nerve and central auditory system, in: “Hearing Science”, C. Berlin, ed., College Hill Press, San Diego.Google Scholar
  48. Wenthold, R.J., Parakkal, M.H., Oberdorfer, M.D. and Altschuler, R.A., 1988, Glycine receptor immunoreactivity in the ventral cochlear nucleus of the guinea pig, J. Comp. Neurol., 276:423–435.PubMedCrossRefGoogle Scholar
  49. Wenthold, R.J., Zempel, J.M., Parakkal, M.H., Reeks, K.A. and Altschuler, R.A., 1986, Immunocytochemical localization of GABA in the cochlear nucleus of the guinea pig, Brain Res., 380:7–18.PubMedCrossRefGoogle Scholar
  50. Wenthold, R.J., 1991, Neurotransmitters of brainstem auditory nuclei, in: “Neurobiology of Hearing: The Central Auditory System”, R.A. Altschuler, R.J. Bobbin, B.M. Clopton, and D.W. Hoffman, eds., Raven Press, New York.Google Scholar
  51. Werman, R., 1980, GABA modulates glycine receptor interaction in Mauthner cells allosterically, in: “Transmitters and their receptors”, U.Z. Littauer, Y. Dudai, I. Silman, V.I. Teichberg, and Z. Vogel, eds., Wiley and sons.Google Scholar
  52. Wu, S.H. and Oertel, D., 1986, Inhibitory circuitry in the ventral cochlear nucleus is probably mediated by glycine, J.Neurosci., 6:2691–706.PubMedGoogle Scholar
  53. Zarbin, M.A., Warmsley, K.K. and Kuhar, M.J., 1981, Glycine receptor: Light microscopic audoradiographic localization with tritiated strychnine, J. Neurosci., 1:532–547.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Richard A. Altschuler
    • 1
  • José M. Juiz
    • 1
    • 2
  • Susan E. Shore
    • 3
  • Sanford C. Bledsoe
    • 1
  • Robert H. Helfert
    • 1
    • 4
  • Robert J. Wenthold
    • 5
  1. 1.Kresge Hearing Research Institute & Dpt. Anatomy & Cell BiologyUniversity of MichiganAnn ArborUSA
  2. 2.Dpt. of Histology and Institute of NeuroscienceUniversity of AlicanteAlicanteSpain
  3. 3.Dpt. of OtolaryngologyMedical College of OhioToledoUSA
  4. 4.Dpt. of Surgery & PharmacologySouthern Ill. Univ. Sch. Med.SpringfieldUSA
  5. 5.Laboratory of NeurochemistryNIDCDBethesdaUSA

Personalised recommendations