Glycine and GABA: Transmitter Candidates of Projections Descending to the Cochlear Nucleus

  • Steven J. Potashner
  • Christina G. Benson
  • E.-Michael Ostapoff
  • Nancy Lindberg
  • D. Kent Morest
Part of the NATO ASI series book series (NSSA, volume 239)


Acoustic information, encoded in the cochlea and conveyed to the cochlear nucleus (CN) by cochlear nerve fibers, is processed by cell groups in the CN. Inhibitory neurotransmission appears to play a prominent role at this level of auditory processing (Brugge and Geisler,’ 78; Voight and Young,’ 80; Caspary et al., this volume). Information has been emerging recently with regard to the location and transmitters of the inhibitory neurons which synapse in the CN. These neurons may originate in other brain stem nuclei that project to the CN, or could lie within the CN itself (Saint Marie et al.,’ 91, this volume; Oertel and Wickesberg, this volume). These inhibitory projections probably use the amino acid transmitters, glycine and GABA at their synapses in the CN (Whitfield and Comis,’ 66; Tachibana and Kuriyama,’ 74; Fex and Wenthold,’ 76; Fisher and Davies,’ 76; Godfrey et al,’ 77,’ 78; Caspary et al,’ 79; Wenthold,’ 79; Martin et al,’ 82).


Cochlear Nucleus Dorsal Cochlear Nucleus Superior Olivary Complex Trapezoid Body Amino Acid Transmitter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J.C. and Warr, W.B., 1976, Origins of axons of the cat’s acoustic striae determined by injection of horseradish peroxidase into severed tracts, J. Comp, Neurol., 170:107–122.CrossRefGoogle Scholar
  2. Benson, C.G. and Potashner, S.J., 1990, Retrograde transport of [3H]Glycine from the cochlear nucleus to the superior olive in the guinea pig, J. Comp. Neurol., 296:415–426.PubMedCrossRefGoogle Scholar
  3. Blasberg, R.G., 1968, Specificity of cerebral amino acid transport: A kinetic analysis, in: “Progress in Brain Research, Vol. 29”, Lajtha A. and Ford D.H., eds., pp. 245–256, Elsevier, Amsterdam.Google Scholar
  4. Blasberg, R.G. and Lajtha A., 1965, Substrate specificity of steady-state amino acid transport in mouse brain slices, Arch. Biochem. Biophys., 112:361–377.CrossRefGoogle Scholar
  5. Blaustein, M.P., Johnson E. M. and Needleman P., 1972, Calcium-dependent norepinephrine release from presynaptic nerve endings in vitro, Proc. Nat. Acad. Sci. USA, 69:2237–2240.PubMedCrossRefGoogle Scholar
  6. Brugge, J.F. and Geisler, C.D., 1978, Auditory mechanisms of the lower brainstem, Ann. Rev. Neurosci., 1:63–94.CrossRefGoogle Scholar
  7. Cant, N.B. and Gaston, K.C., 1982, Pathways connecting the right and left cochlear nuclei, J. Comp. Neurol., 212:313–326.PubMedCrossRefGoogle Scholar
  8. Caspary, D.M., Havey, D.C. and Faingold, C.L., 1979, Effects of microiontophoretically applied glycine and GABA on neuronal response patterns in the cochlear nuclei, Brain Res., 172:179–185.PubMedCrossRefGoogle Scholar
  9. Cuenod, M., Bagnoli, P., Beaudet, A., Rustioni, A., Wiklund, L. and Streit, P., 1982, Transmitter-specific retrograde labelling of neurons, in: “Cytochemical Methods in Neuroanatomy”, Chan-Palay V. and Palay S.L., eds., A.R. Liss, Inc., New York, pp. 17–44.Google Scholar
  10. Davidoff, R.A. and Adair, R., 1976, GABA and glycine transport in frog CNS: High affinity uptake and potassium-evoked release in vitro, Brain Res., 118:403–415.PubMedCrossRefGoogle Scholar
  11. Elverland, H.H., 1977, Descending connections between the superior olivary and cochlear nucleus complexes in the cat studied by autoradiographic and horseradish peroxidase methods, Exp. Brain Res., 27:397–412.PubMedCrossRefGoogle Scholar
  12. Fex, J. and Wenthold, R.J., 1976, Choline acetyltransferase, glutamate decarboxylase, and tyrosine hydroxylase in the cochlea and cochlear nucleus of the guinea pig, Brain Res., 109:575–585.PubMedCrossRefGoogle Scholar
  13. Fisher, S.K. and Davies, W.E., 1976, GABA and its related enzymes in the lower auditory system of the guinea pig, J. Neurochem., 27:1145–1155.PubMedCrossRefGoogle Scholar
  14. Frostholm, A. and Rotter, A., 1985, Glycine receptor distribution in mouse CNS:Autoradiographic localization of binding sites, Brain Res. Bull., 15:473–486.PubMedCrossRefGoogle Scholar
  15. Ginzberg, R.D. and Morest, D.K., 1983, A study of cochlear innervation in the young cat with the Golgi method, Hearing Res., 10:227–246.CrossRefGoogle Scholar
  16. Godfrey, D.A., Carter J., Berger S.J., Lowry, O.H. and Matschinsky, F., 1977, Quantitative histochemical mapping of candidate transmitter amino acids in cat cochlear nucleus, J. Histochem. Cytochem., 25:417–431.PubMedCrossRefGoogle Scholar
  17. Godfrey, D.A., Carter, J., Lowry, O.H. and Matschinsky, F.M., 1978, Distribution of gamma-aminobutyric acid, glycine, glutamate and aspartate in the cochlear nucleus of the rat, J. Histochem. Cytochem., 26:118–126.PubMedCrossRefGoogle Scholar
  18. Gundlach, A.L. and Beart, P.M., 1982, Neurochemical studies of the mesolimbic dopaminergic pathway: Glycinergic mechanisms and glycinergic-dopaminergic interactions in the rat ventral tegmentum, J. Neurochem., 38:574–581.PubMedCrossRefGoogle Scholar
  19. Hökfelt, T. and Ljungdahl, A., 1971, Light and electron microscopic autoradiography on spinal cord slices after incubation with labelled glycine, Brain Res., 32:189–194.PubMedCrossRefGoogle Scholar
  20. Hökfelt, T. and Ljungdahl, A., 1975, Uptake mechanisms as a basis for the histochemical identification and tracing of transmitter-specific neuron populations, in: “The use of axonal transport for studies of neuronal connectivity”, Cowan W.M. and Cuenod M., eds., Elsevier, Amsterdam, pp. 249–305.Google Scholar
  21. Iversen, L.L., 1978, Identification of transmitter-speeifie neurons in the CNS by autoradiography, in: “Handbook of Psychopharmacology, Vol. 9”, Iversen L.L., Iversen S.D. and Snyder S.H., eds., Plenum Press, New York, pp. 41–68.Google Scholar
  22. Iversen, L.L. and Bloom, F.E., 1972, Studies of the uptake of 3H-GABA and 3H-glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography, Brain Res., 41:131–143.PubMedCrossRefGoogle Scholar
  23. Johnston, G.A.R. and Iversen, L.L., 1971, Glycine uptake in rat central nervous system slices and homogenates: Evidence for different uptake systems in spinal cord and cerebral cortex, J. Neurochem., 18:1951–1961.PubMedCrossRefGoogle Scholar
  24. Kane, E.S., 1976, Descending inputs to caudal cochlear nucleus in cats: A horseradish peroxidase (HRP) study, Amer. J. Anat., 146:433–441.PubMedCrossRefGoogle Scholar
  25. Kane, E.S., 1977a, Descending inputs to the dorsal cochlear nucleus of the cat: An electron microscopic study, J. Neurocytol., 6:587–605.CrossRefGoogle Scholar
  26. Kane, E.S., 1977b, Descending inputs to the octopus cell area of the cat cochlear nucleus: An electron microscopic study, J. Comp. Neurol., 173:337–354.PubMedCrossRefGoogle Scholar
  27. Kane, E.S. and Conlee, J.W., 1979, Descending inputs to the caudal cochlear nucleus of the cat: degeneration and autoradiographic studies, J. Comp Neurol., 187:759–784.PubMedCrossRefGoogle Scholar
  28. Kane, E.S. and Finn, R.C., 1977, Descending and intrinsic inputs to the cat caudal cochlear nucleus: A horseradish peroxidase study, Neuroscience, 2:897–912.CrossRefGoogle Scholar
  29. Lajtha, A., 1967, Transport as control mechanism of cerebral metabolite levels, in: “Progress in Brain Research, Vol. 29”, Lajtha A. and Ford D. H., eds., Elsevier, Amsterdam, pp. 201–216.Google Scholar
  30. Logan, W.L. and Snyder, S.H., 1972, High affinity uptake systems for glycine, glutamic and aspartic acids in synaptosomes of rat central nervous tissues, Brain Res., 42:413–431.PubMedCrossRefGoogle Scholar
  31. Martin, M.R., Dickson, J.W. and Fex, J., 1982, Bicuculline, strychnine, and depressant amino acid responses in the anteroventral cochlear nucleus of the cat, Neuropharmacology, 21:201–207.PubMedCrossRefGoogle Scholar
  32. Matus, A.I. and Dennison, M.E., 1971, Autoradiographic localization of tritiated glycine at “flat-vesicle” synapses in spinal cord, Brain Res., 32:195.PubMedCrossRefGoogle Scholar
  33. Neal, M.J. and Pickles, H.G., 1969, Uptake of 14C-glycine by spinal cord, Nature, 222:679–680.PubMedCrossRefGoogle Scholar
  34. Neame, K.D., 1968, A comparison of the transport systems for amino acids in brain, kidney and tumor, Prog. in Brain Res., 29:185–196.CrossRefGoogle Scholar
  35. Oliver, D.L., Potashner, S.J., Jones, D.R. and Morest, D.K., 1983, Selective labelling of spiral ganglion and granule cells with D-aspartate in the auditory system of cat and guinea pig, J. Neurosci., 3:455–472.PubMedGoogle Scholar
  36. Orrego, F., 1979, Criteria for identification of central neurotransmitters and their application to studies with nervous tissue preparations in vitro, Neuroscience, 4:1037–1057.PubMedCrossRefGoogle Scholar
  37. Osen, K.K. and Roth, K., 1969, Histochemical localization of esterases in the cochlear nuclei of the cat with notes on the origin of acetyl-Cholinesterase-positive afférents and the superior olive, Brain Res., 16:165–185.PubMedCrossRefGoogle Scholar
  38. Ostapoff, E.-M., Morest, D.K. and Potashner, S.J., 1990, Uptake and retrograde transport of [3H]GABA from the cochlear nucleus to the superior olive in the guinea pig, J. Chem. Neuroanat., 3:285–295.PubMedGoogle Scholar
  39. Potashner, S.J., 1978, The effects of tetrodotoxin, calcium and magnesium on the release of amino acids from slices of guinea pig cerebral cortex, J. Neurochem., 31:187–195.PubMedCrossRefGoogle Scholar
  40. Potashner, S.J., Lindberg, N. and Morest, D.K., 1985, Uptake and release of GABA in the guinea pig cochlear nucleus after axotomy of cochlear and centrifugal fibers, J. Neurochem., 45:1558–1566.PubMedCrossRefGoogle Scholar
  41. Potashner, S.J. and Tran, P.L., 1984, Decreased uptake and release of D-aspartate in the guinea pig spinal cord after dorsal root section, J. Neurochem., 42:1135–1144.PubMedCrossRefGoogle Scholar
  42. Rasmussen, G.L., 1967, Efferent connections of the cochlear nucleus, in: “Sensorineural Hearing Processes and Disorders”, Graham A. B., ed., Little Brown, Boston, pp. 61–75.Google Scholar
  43. Rubin, R.P., 1974, “Calcium and the secretory process”, Plenum Press, New York.CrossRefGoogle Scholar
  44. Saint Marie, R.L., Morest, D.K. and Brandon, C.J., 1989, The form and distribution of GABAergic synapses on the principal cell types of the ventral cochlear nucleus of the cat, Hearing Res., 42:97–112.CrossRefGoogle Scholar
  45. Saint Marie, R.L., Ostapoff, E.M., Benson, C.G. and Morest, D.K., 1991, Glycine immunoreactive projections from the dorsal to the anteroventral cochlear nucleus, Hearing Res., 51:11–28.CrossRefGoogle Scholar
  46. Sellstrom, A. and Hamberger, A., 1977, The uptake and release of putative amino acid transmitters from neurons and glia, Brain Res., 119:189–198.PubMedCrossRefGoogle Scholar
  47. Spangler, K.M., Cant, N.B., Henkel, C.K., Farley, G.R. and Warr, W.B., 1987, Descending projections from the superior olivary complex to the cochlear nucleus of the cat, J. Comp. Neurol., 259:452–465.PubMedCrossRefGoogle Scholar
  48. Staatz-Benson, C. and Potashner, S.J., 1987, Uptake and release of glycine in the guinea pig cochlear nucleus, J. Neurochem., 49:128–137.PubMedCrossRefGoogle Scholar
  49. Staatz-Benson, C. and Potashner, S.J., 1988, Uptake and release of glycine in the guinea pig cochlear nucleus after axotomy of afferent or centrifugal fibers, J. Neurochem., 51:370–379.PubMedCrossRefGoogle Scholar
  50. Streit, P., 1980, Selective retrograde labelling indicating the transmitter of neuronal pathways, J. Comp. Neurol., 191:429–463.PubMedCrossRefGoogle Scholar
  51. Tachibana, M. and Kuriyama, K., 1974, Gamma-aminobutyric acid in the lower auditory pathway of the guinea pig, Brain Res., 69:370–374.PubMedCrossRefGoogle Scholar
  52. van Noort, J., 1969, The anatomical basis for frequency analysis in the cochlear nucleus complex, Psychiat. Neurolg. Neurochir., 72:109–114.Google Scholar
  53. Voight, H.F. and Young, E.D., 1980, Evidence of inhibitory interactions between neurons in dorsal cochlear nucleus, J. Neurophysiol., 44:76–96.Google Scholar
  54. Wenthold, R.J., 1979, Release of endogenous glutamic acid, aspartic acid, and GABA from cochlear nucleus slices, Brain Res., 162:338–343.PubMedCrossRefGoogle Scholar
  55. Wenthold, R.J., Betz, H., Reeks, K.A., Parakkal, M.H. and Altschuler, R.A., 1985, Localization of glycinergic synapses in the cochlear nucleus and superior olivary complex with monoclonal antibodies specific for the glycine receptor, Neurosci. Abstr., 11:1048.Google Scholar
  56. Werman, R., 1966, Criteria for identification of a central nervous system transmitter, Comp. Biochem. Physiol., 18:745–766.PubMedCrossRefGoogle Scholar
  57. Whitfield, I.C. and Comis, S.D., 1966, The role of inhibition in information transfer: The interaction of centrifugal and centripetal stimulation on neurones of the cochlear nucleus, “Final report II AF EOAR” (U.S. Air Force), 63-115.Google Scholar
  58. Wiederhold, M.L., 1986, Physiology of the olivocochlear system, in: “Neurobiology of Hearing: The Cochlea”, Altschuler, R.A., Hoffman, D.W. and Bobbin, R.P., eds., Raven Press, New York, pp. 349–370.Google Scholar
  59. Winter, I.M., Robertson, D. and Cole, K.S., 1989, Descending projections from auditory brainstem nuclei to the cochlea and cochlear nucleus of the guinea pig, J. Comp. Neurol., 280:143–147.PubMedCrossRefGoogle Scholar
  60. Young, A.B. and MacDonald, R.L., 1983, Glycine as a spinal cord neurotransmitter, in: “Handbook of the spinal cord”, Davidoff R.A., ed,, Marcel Decker, New York, pp. 1–43.Google Scholar
  61. Zarbin, M.A., Wamsley, J.K. and Kuhar, M.J., 1981, Glycine receptor: Light microscopic localization with 3H-strychnine, J. Neurosci., 1:532–547.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Steven J. Potashner
    • 1
  • Christina G. Benson
    • 1
  • E.-Michael Ostapoff
    • 1
  • Nancy Lindberg
    • 1
  • D. Kent Morest
    • 1
  1. 1.Department of AnatomyUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations