Excitatory Amino Acid Receptors in the Rat Cochlear Nucleus

  • Robert J. Wenthold
  • Chyren Hunter
  • Ronald S. Petralia
Part of the NATO ASI series book series (NSSA, volume 239)


The neurotransmitters of the cochlear nucleus (CN) have received considerable attention, but probably the most important class of neurotransmitters, the excitatory amino acids (EAAs), is also the least understood not only in the CN, but throughout the central nervous system. They have been difficult to study on essentially all levels, including measurement of the amino acids themselves, their biosynthesis and degradation, release, and postsynaptic receptors. With the exception of neuropeptides, EAAs appear to be the last major class of neurotransmitters to be identified even though it is now commonly believed that most excitatory synapses in the central nervous system use an EAA as a neurotransmitter. Many attempts were made to identify a marker that could be used for selectively localizing EAA releasing neurons. Several useful markers were identified, including glutamate and aspartate themselves, uptake of radioactive EAAs, and enzymes in the metabolism of glutamate and aspartate, but no reliable method, which worked in all cases, was found.


Granule Cell Auditory Nerve Cochlear Nucleus Dorsal Cochlear Nucleus Excitatory Amino Acid Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitkin, L.M., 1989, The auditory system, in: “Handbook of Chemical Neuroanatomy, Vol. 7: Integrated Systems of the CNS, Part II,” A. Björklund, T. Hökfelt and L.W. Swanson, Eds., Elsevier Science Publishers B.V., Amsterdam, pp. 165–218.Google Scholar
  2. Altschuler, R.A., Wenthold, R.J., Schwartz, A.M., W.G. Haser, W.G., Curthoys, N.P., Parakkal, M. and Fex, J., 1984, Immunocytochemical localization of glutaminase-like immunoreactivity in the auditory nerve, Brain Res., 291:173.PubMedCrossRefGoogle Scholar
  3. Altschuler, R.A., Hoffman, D.W. and Wenthold, R.J., 1986, Neurotransmitters of the cochlea and cochlear nucleus: Immunocytochemical evidence, Am. J. Otolaryngol., 7:100.PubMedCrossRefGoogle Scholar
  4. Alvarez-Bolado, G. and Merchán, J., 1988, Synaptic endfeet in the ‘acoustic nerve nucleus’ of the rat. An electron microscope study, J. Anat., 159:19.PubMedGoogle Scholar
  5. Benson, T.E. and Ryugo, D.R., 1987, Axons of presumptive type-II spiral ganglion neurons synapse with granule cells of the cat cochlear nucleus, Soc. Neurosci. Abstr. 13:1258.Google Scholar
  6. Bettler, B., Boulter, J., Hermans-Borgmeyer, I., O’Shea-Greenfield, A., Deneris, E.S., Moll, C., Borgmeyer, U., Hollmann, M. and Heinemann, S., 1990, Cloning of a novel glutamate receptor subunit, GluR5: Expression in the nervous system during development, Neuron, 5:583.PubMedCrossRefGoogle Scholar
  7. Blackstad, T.W., Osen, K.K. and Mugnaini, E., 1984, Pyramidal neurones of the dorsal cochlear nucleus: A Golgi and computer reconstruction study in cat, Neuroscience, 13:827.PubMedCrossRefGoogle Scholar
  8. Boulter, J., Hollmann, M., O’Shea-Greenfield, A., Hartley, M., Deneris, E., Maron, C. and Heinemann, S., 1990, Molecular cloning and functional expression of glutamate receptor genes, Science, 249:1033.PubMedCrossRefGoogle Scholar
  9. Brown, M.C., Berglund, A.M., Kiang, N.Y.S. and Ryugo, D.K., 1988, Central trajectories of type II spiral ganglion neurons, J. Comp. Neurol. 278:581.PubMedCrossRefGoogle Scholar
  10. Cant, N.B. and Morest, D.K., 1984, The structural basis for stimulus coding in the cochlear nucleus of the cat, in: “Hearing Science: Recent Advances,” C.I. Berlin, ed., College-Hill Press, San Diego, pp.371–421.Google Scholar
  11. Caspary, D.M., Rybak, L.P. and Faingold, C.L., 1985, The effects of inhibitory and excitatory neurotransmission on the response properties of brainstem auditory neurons, in: “Auditory Biochemistry,” D.G. Drescher, ed., Charles C. Thomas, Springfield, pp. 198–226.Google Scholar
  12. Choi, D.W., 1987, Ionic dependence of glutamate neurotoxicity, J. Neurosci., 7:369.PubMedGoogle Scholar
  13. Cline, H.T. and Constantine-Paton, M., 1989, NMD A receptor antagonists disrupt the retinotectal map, Neuron, 3:413.PubMedCrossRefGoogle Scholar
  14. Dawson, T.L., Nicholas, R.A. and Dingledine, R., 1990, Homomeric GluR1 excitatory amino acid receptors expressed in Xenopus Oocytes, Mol. Pharmacol., 38:779.PubMedGoogle Scholar
  15. Dyson, S.E., Warton, S.S. and Cockman, B., 1991, Volumetric and histological changes in the cochlear nuclei of visually deprived rats: A possible morphological basis for intermodal sensory compensation, J. Comp. Neurol., 307:39.PubMedCrossRefGoogle Scholar
  16. Egebjerg, J., Bettler, B., Hermans-Borgmeyer, I. and Heinemann, S., 1991, Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA, Nature, 351:745.PubMedCrossRefGoogle Scholar
  17. Feldman, M.L. and Peters, A., 1972, Intranuclear rods and sheets in rat cochlear nucleus, J. Neurocytol., 1:109.PubMedCrossRefGoogle Scholar
  18. Foster, A. and Fagg, G.E., 1984, Acidic amino acid binding sites in mammalian neuronal membranes: Their characteristics and relationship to synaptic receptors, Brain Res. Rev., 7:103.CrossRefGoogle Scholar
  19. Gall, C., Sumikawa, K. and Lynch, G., 1990, Levels of mRNA for a putative kainate receptor are affected by seizures, Proc. Natl. Acad. Sci. U.S.A., 87:7643.PubMedCrossRefGoogle Scholar
  20. Garthwaite, G., Hajow, F. and Garthwaite, J., 1986, Ionic requirements for neurotoxic effects of excitatory amino acid analogues in rat cerebellar slices, Neuroscience, 18:437.PubMedCrossRefGoogle Scholar
  21. Greenamyre, T.J., Young, A.B. and Penney, J.B., 1984, Quantitative autoradiographic distribution of L-[3H]glutamate-binding sites in rat central nervous system, J. Neurosci., 4:2133.PubMedGoogle Scholar
  22. Gregor, P., Mano, I., Maoz, I., McKeown, M. and Teichberg, V.I., 1989, Molecular structure of the chick cerebellar kainate binding subunit of a putative glutamate receptor, Nature, 342:689.PubMedCrossRefGoogle Scholar
  23. Halpain, S., Wieczorek, CM. and Rainbow, T.C., 1984, Localization of L-glutamate receptors in rat brain by quantitative autoradiography, J. Neurosci., 4:2247.PubMedGoogle Scholar
  24. Harrison, J.M. and Warr, W.B., 1962, A study of the, cochlear nuclei and ascending auditory pathways of the medulla, J. Comp. Neurol., 119:341.PubMedCrossRefGoogle Scholar
  25. Harrison, J.M. and Irving, R., 1965, The anterior ventral cochlear nucleus, J. Comp. Neurol., 124:15.PubMedCrossRefGoogle Scholar
  26. Harrison, J.M. and Irving, R., 1966, The organization of the posterior ventral cochlear nucleus in the rat, J. Comp. Neurol., 126:391.PubMedCrossRefGoogle Scholar
  27. Hirsch, J.A. and Oertel, D., 1988, Synaptic connections in the dorsal cochlear nucleus of mice, in vitro, J. Physiol., 396:549.PubMedGoogle Scholar
  28. Hollmann, M., O’Shea-Greenfield, A., Rogers, S.W. and Heinemann, S., 1989, Cloning by functional expression of a member of the glutamate receptor family, Nature, 342:643.PubMedCrossRefGoogle Scholar
  29. Hollmann, M., Hartley, M., and Heinemann, S., 1991, Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition, Science, 252:851.PubMedCrossRefGoogle Scholar
  30. Houamed, K.M., Kuijper, J.L., Gilbert, T.L., Haldeman, B.A., O’Hara, P.J., Mulvihill, E.R., Almers, W., and Hagen, F.S., 1991, Cloning, expression, and gene structure of a G protein-coupled glutamate receptor from rat brain, Science, 252:1318.PubMedCrossRefGoogle Scholar
  31. Jackson, H., Nemeth, E.F.,and Parks, T.N., 1985, Non-N-methyl-D-aspartate receptors mediating synaptic transmission in the avian cochlear nucleus: Effects of kynurenic acid, dipicolinic acid and streptomycin, Neuroscience, 16:171.PubMedCrossRefGoogle Scholar
  32. Keinänen, K., Wisden, W., Sommer, B., Werner, P., Herb, A., Verdoorn, T.A., Sakmann, B., and Seeburg, P.H., 1990, A family of AMPA-selective glutamate receptors, Science, 249:556.PubMedCrossRefGoogle Scholar
  33. Manis, P.B., 1989, Responses to parallel fiber stimulation in the guinea pig dorsal cochlear nucleus in vitro, J. Neurophysiol., 61:149.PubMedGoogle Scholar
  34. Martin, M.R., 1980, The effects of iontophoretically-applied antagonists on auditory nerve and amino acid-evoked excitation on the anteroventral cochlear nucleus neurons, Neuropharmacology, 19:519.PubMedCrossRefGoogle Scholar
  35. Masu, M., Tanabe, Y., Tsuchida, K., Shigemoto, R., and Nakanishi, S., 1991, Sequence and expression of a metabotropic glutamate receptor, Nature, 349:760.PubMedCrossRefGoogle Scholar
  36. Mayer, M.L., and Westbrook, G.L., 1987, The physiology of excitatory amino acids in the vertebrate central nervous system, Prog. Neurobiol., 28:197.PubMedCrossRefGoogle Scholar
  37. Monaghan, D.T., and Cotman, C.W., 1982, The distribution of [3H]kainic acid binding sites in rat CNS as determined by autoradiography, Brain Res., 252:91.PubMedCrossRefGoogle Scholar
  38. Monaghan, D.R., and Cotman, C.W., 1985, Distribution of N-methyl-D-aspartate-sensitive L-[3H]glutamate-binding sites in rat brain, J. Neurosci., 5:2902.Google Scholar
  39. Monaghan, D.T., Bridge, R.J., and Cotman, C.W., 1989, The excitatory amino acid receptors, Annu. Rev. Pharmacol. Toxicol., 29:365.PubMedCrossRefGoogle Scholar
  40. Monyer, H., Seeburg, P.H., and Wisden, W., 1991, Glutamate-operated channels: Developmentally early and mature forms arise by alternative splicing, Neuron, 6:799.PubMedCrossRefGoogle Scholar
  41. Mugnaini, E., 1985, GABA neurons in the superficial layers of the rat dorsal cochlear nucleus: Light and electron microscopic immunocytochemistry, J. Comp. Neurol. 235:61.PubMedCrossRefGoogle Scholar
  42. Mugnaini, E., Osen, K.K., Dahl, A.L., Friedrich Jr., V.L., and Korte, G., 1980a, Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat, and mouse, J. Neurocytol., 9:537.PubMedCrossRefGoogle Scholar
  43. Mugnaini, E., Warr, W.B.,and Osen, K.K., 1980b, Distribution and light microscopic features of granule cells in the cochlear nuclei of cat, rat, and mouse, J. Comp. Neurol., 191:581.PubMedCrossRefGoogle Scholar
  44. Nakanishi, N., Shneider, N.A.,and Axel, R., 1990, A family of glutamate receptor genes: Evidence for the formation of heteromultimeric receptors with distinct channel properties, Neuron, 5:569.PubMedCrossRefGoogle Scholar
  45. Nemeth, E.F., Jackson, H., and Parks, T.N., 1985, Evidence for the involvement of kainate receptors in synaptic transmission in the avian cochlear nucleus, Neurosci. Lett., 59:297.PubMedCrossRefGoogle Scholar
  46. Oliver, D.L., Potashner, S.J., Jones, D.R., and Morest, D.K., 1983, Selective labeling of spiral ganglion and granule cells with D-aspartate in the auditory system of cat and guinea pig, J. Neurosci., 3:455.PubMedGoogle Scholar
  47. Olney, J.W., Price, M.T., Samson, L., and Labruyere, L., 1986, The role of specific ions in glutamate neurotoxicity, Neurosci. Lett., 65:65.PubMedCrossRefGoogle Scholar
  48. Osen, K.K., 1969, Cytoarchitecture of the cochlear nuclei in the cat, J. Comp. Neurol. 136:453.PubMedCrossRefGoogle Scholar
  49. Ottersen, O.P., 1989, Quantitative electron microscopic immunocytochemistry of neuroactive amino acids, Anat. Embryol., 180:1.PubMedCrossRefGoogle Scholar
  50. Pellegrini-Giampietro, D.E., Bennett, M.V.L., and Zukin, R.S., 1991, Differential expression of three glutamate receptor genes in developing rat brain: An in situ hybridization study, Proc. Natl. Acad. Sci. U.S.A., 88:4157.PubMedCrossRefGoogle Scholar
  51. Petralia, R.S., and Wenthold, R.J., 1992, Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain, J. Comp. Neurol., 318:329.PubMedCrossRefGoogle Scholar
  52. Potashner, S.J., 1983, Uptake and release of D-aspartate in the guinea pig cochlear nucleus, J. Neurochem., 41:1094.PubMedCrossRefGoogle Scholar
  53. Saldaña, E., Carro, J., Merchan, M., and Collia, F., 1988, Morphometric and cytoarchitectural study of the different neuronal types in the VCN of the rat, in: “Auditory Pathway: Structure and function,” J. Syka and R.B. Masterson, eds., Plenum Press, New York, pp. 89–93.CrossRefGoogle Scholar
  54. Sommer, B., Keinänen, K., Verdoorn, T.A., Wisden, W., Burnashev, N., Herb, A., Köhler, M., Takagi, T., Sakmann, B., and Seeburg, P.H., 1990, Flip and flop: A cell-specific functional switch in glutamate-operated channels of the CNS, Science, 249:1580.PubMedCrossRefGoogle Scholar
  55. Staatz-Benson C., and Potashner, S.J., 1988, Uptake and release of glycine in the guinea pig cochlear nucleus after axotomy of afferent or centrifugal fibers, J. Neurochem., 51:370.PubMedCrossRefGoogle Scholar
  56. Verdoora, T.A., Buraashev, N., Monyer, H., Seeburg, P.H., and Sakmann, B., 1991, Structural determinants of ion flow through recombinant glutamate receptor channels, Science, 252:1715.CrossRefGoogle Scholar
  57. Wada, K., Dechesne, C.J., Shimasaki, S., King, R.G., Kusano, K., Buonanno, A., Hampson, D.R., Banner, C., Wenthold, R.J. and Nakatani, Y., 1989, Sequence and expression of a frog brain complementary DNA encoding a kainate-binding protein, Nature, 342:684.PubMedCrossRefGoogle Scholar
  58. Watkins, J.C. and Evans, R.H., 1981, Excitatory amino acid transmitters, Annu. Rev. Pharmacol. Toxicol., 21:165.PubMedCrossRefGoogle Scholar
  59. Webster, W.R., 1985, Auditory system, in: “The Rat Nervous System,” G. Paxinos, ed., Academic Press, New York, pp. 153–184.Google Scholar
  60. Wenthold, R.J. and Martin, M.R., 1984, Neurotransmitters of the auditory nerve and central auditory system, in: “Hearing Science: Recent Advances,” C. Berlin, ed., College Hill Press, San Diego, pp.341–369.Google Scholar
  61. Wenthold, R.J., Hunter, C., Wada, K. and Dechesne, C.J., 1990, Antibodies to a C-terminal peptide of the rat glutamate receptor subunit, GluR-A, recognize a subpopulation of AMPA binding sites but not kainate sites, FEBS Lett. 276:147.PubMedCrossRefGoogle Scholar
  62. Wenthold, R.J., Yokotani, N., Doi, K. and Wada, K., 1992, Immunochemical characterization of the non-NMDA glutamate receptor using subunit-specific antibodies: Evidence for a hetero-oligomeric structure in rat brain, J. Biol. Chem., 267:501.PubMedGoogle Scholar
  63. Werner, P., Voigt, M., Keinänen, K., Wisden, W. and Seeburg, P.H., 1991, Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells, Nature, 351:742.PubMedCrossRefGoogle Scholar
  64. Wickesberg, R.E. and Oertel, D., 1989, Auditory nerve neurotransmitter acts on a kainate receptor: evidence from intracellular recordings in brain slices from mice, Brain Res., 486:39.PubMedCrossRefGoogle Scholar
  65. Wouterlood, F.G., Mugnaini, E., Osen, K.K. and Dahl, A.L., 1984, Stellate neurons in rat dorsal cochlear nuclear studied with combined Golgi impregnation and electron microscopy: synaptic connections and mutual coupling by gap junctions, J. Neurocytol., 13:639.PubMedCrossRefGoogle Scholar
  66. Wouterlood, F.G. and Mugnaini, E., 1984, Cartwheel neurons of the dorsal cochlear nucleus: A Golgi-electron microscopic study in rat, J. Comp. Neurol., 227:136.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Robert J. Wenthold
    • 1
  • Chyren Hunter
    • 1
  • Ronald S. Petralia
    • 1
  1. 1.Laboratory of Neurochemistry, National Institute on Deafness and Other Communication DisordersNIHBethesdaUSA

Personalised recommendations