Localizing Putative Excitatory Endings in the Cochlear Nucleus by Quantitative Immunocytochemistry

  • José M. Juiz
  • Maria E. Rubio
  • Robert H. Helfert
  • Richard A. Altschuler
Part of the NATO ASI series book series (NSSA, volume 239)


A major characteristic of CN neurons is their rich and complex patterns of synaptic inputs. The input carried by the auditory nerve (AN) is relayed to CN neurons through very secure excitatory synapses (reviewed by Wenthold and Martin,’ 84 and Caspary,’ 86, see also chapter by Morest in this volume). In addition, an intricate array of intrinsic and extrinsic (descending) connections from a variety of sources (see chapter by Saint-Marie et al. in this volume), make inhibitory as well as excitatory synapses on CN neurons. This pattern of synaptic inputs is specific for each cell type and determines in part the different processing abilities of CN neurons. Therefore, analyzing the synaptology of CN neurons is essential for an adequate understanding of the roles of CN in auditory processing. Several questions relevant to understand the functional synaptology of the CN are addressed in several chapters of this volume. Here we report on some of our recent findings regarding the chemical anatomy of putative excitatory endings in the CN.


Granule Cell Auditory Nerve Cochlear Nucleus Excitatory Synapse Spiral Ganglion Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J.C. and Mugnaini, E., 1987, Patterns of glutamate decarboxylase immunostaining in the feline cochlear nuclear complex studied with silver enhancement and electron microscopy, J. Comp, Neural., 262:375–401.CrossRefGoogle Scholar
  2. Altschuler, R.A., Neises, G.R., Harmison, G.G., Wenthold, R.J. and Fex, J., 1981, Immunocytochemical localization of aspartate aminotransferase immunoreactivity in the cochlear nucleus of the guinea pig, Proc. Nat. Acad. Sci. U.S.A., 78:6553–6557.CrossRefGoogle Scholar
  3. Altschuler, R.A., Wenthold, R.J., Schwartz, A.M., Haser, W.G., Curthoys, N.P., Parakkal, M. and Fex, J., 1984, Immunocytochemical localization of glutaminase-like immunoreactivity in the auditory nerve, Brain Res., 291:173–178.PubMedCrossRefGoogle Scholar
  4. Caspary, D.M., 1986, Cochlear Nuclei: Functional neuropharmacology of the different cell types, in: “Neurobiology of Hearing: The Cochlea”, R.A. Altschuler, R.P. Bobbin, D.W. Hoffman, eds., pp. 303–332, Raven Press, New York.Google Scholar
  5. Conlee, J.W. and Kane, E.S., 1982, Descending projections from the inferior colliculus to the dorsal cochlear nucleus in the cat: an autoradiographic study, Neuroscience, 7(1): 161–178.PubMedCrossRefGoogle Scholar
  6. De Mey, J., Moeremans, M., Geuens, G., Nuydens, R. and De Brabander, M., 1981, High resolution light and electron microscopic localization of tubulin with the IGS (immuno gold staining) method, Cell Biol. Int. Rep., 5(9):889–899.PubMedCrossRefGoogle Scholar
  7. De Mey, R.J., 1983, The preparation of Immunoglobulin gold conjugates (IGS reagents) and their use as markers for light and electron microscopic immunocytochemistry, in: “Immunocytochemistry”,, A.C. Cuello, ed., pp. 347–372, John Willey and Sons, New York.Google Scholar
  8. Eccles, J.C., 1964, The Physiology of Synapses, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  9. Fonnum, F., 1984, Glutamate: A neurotransmitter in mammalian brain, J. Neurochem., 42:1–11.PubMedCrossRefGoogle Scholar
  10. Gentschev, T. and Sotelo, C., 1973, Degenerative patterns in the ventral cochlear nucleus of the rat after primary deafferentation. An ultrastructural study, Brain Res., 62:37–46.PubMedCrossRefGoogle Scholar
  11. Godfrey, D.A., Carter, J.A., Berger, S.J., Lowry, O.H. and Matschinsky, F.M., 1977, Quantitative histochemical mapping of candidate transmitter amino acids in cat cochlear nucleus, J. Histochem. Cytochem., 25:417–31.PubMedCrossRefGoogle Scholar
  12. Godfrey, D.A., Carter, J.A., Lowry, O.H. and Matchinsky, F.M., 1978, Distribution of gamma-aminobutyric acid, glycine, glutamate and aspartate in the cochlear nucleus of the rat, J. Histochem. Cytochem., 26:118–126.PubMedCrossRefGoogle Scholar
  13. Gray, E.G., 1959, Axo-somatic and axo-dendritic synapses of the cerebral cortex. An electron microscope study, J. Anat., 93:420–433.PubMedGoogle Scholar
  14. Gray, E.G., 1969, Electron microscopy of excitatory and inhibitory synapses, “Mechanisms of synaptic transmission”, Progress in Brain Res., Vol. 37.Google Scholar
  15. Hepler, J.R., Toomim, C.S., McCarthy., K.D., Conti, F., Battaglia, G., Rustioni, A. and Petrusz, P., 1988, Characterization of antisera to glutamate and asparate, J. Histochem. Cytochem., 36:13–22.PubMedCrossRefGoogle Scholar
  16. Hirsch, J.A. and Oertel, D., 1988, Synaptic connections in the dorsal cochlear nucleus of mice “in vitro”, J. Physiol., 396:549–562.PubMedGoogle Scholar
  17. Horisberger, M. and Rosset, J., 1977, Colloidal gold, a useful marker for transmission and scanning electron microscopy, J. Histochem. Cytochem., 25:295–305.PubMedCrossRefGoogle Scholar
  18. Ibata, Y. and Pappas, G., 1976, The fine structure of synapses in relation to the large spherical neurons in the anterior ventral cochlear nucleus, J. Neurocytol., 5:395–406.PubMedCrossRefGoogle Scholar
  19. Kane, ES, 1977, Descending inputs to the cat dorsal cochlear nucleus: an electron microscopic study, J. Neurocytol., 6(5):583–605.PubMedCrossRefGoogle Scholar
  20. Lenn, N.J. and Reese, T.S., 1966, The fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus, Am. J. Anat., 118:375–389.PubMedCrossRefGoogle Scholar
  21. Liu, C., Grandes, P., Matute, C., Cuenod, M. and Streit, P., 1989, Glutamate-like immunoreactivity revealed in rat olfactory bulb, hippocampus and cerebellum by monoclonal antibody and sensitive staining method, Histochemistry, 90:427–445.PubMedCrossRefGoogle Scholar
  22. Manis, P., 1989, Responses to parallel fiber stimulation in the guinea pig dorsal cochlear nucleus, J. Neurophysiol., 61:149–158.PubMedGoogle Scholar
  23. Martin, M.R., 1985, Evidence for an excitatory amino acid as the transmitter of the auditory nerve in the “in vitro” mouse cochlear nucleus, Hearing Res., 17:215–222.CrossRefGoogle Scholar
  24. Maxwell, D.J., Christie, W.M., Short, A.D., Storm-Mathisen, J. and Ottersen, O.P., 1990, Central boutons of glomeruli in the spinal cord of the cat are enriched with L-glutamate-like immunoreactivity, Neuroscience, 36:83–104.PubMedCrossRefGoogle Scholar
  25. Maycox, P.R., Hell, J.W. and Jahn, R., 1990, Amino acid neurotransmitters: spotlight on synaptic vesicles, Trends in Neurosci., 13:83–87.CrossRefGoogle Scholar
  26. McGeer, P.L., Eccles, J.C. and McGeer, E.G., 1987, Inhibitory amino acid neurotransmitters, in: “Molecular Neurobiology of the Mammalian Brain”, P.L. McGeer, J.C. Eccles, E.G. McGeer, eds., pp. 197–234, Plenum Press, New York.CrossRefGoogle Scholar
  27. McGeer, P.L., Eccles, J.C. and McGeer, E.G., 1987, Putative excitatory neurons: glutamate and aspartate, in: “Molecular Neurobiology of the Mammalian Brain”, McGeer P.L., Eccles J.C., McGeer E.G., eds., pp. 175–196, Plenum Press, New York.CrossRefGoogle Scholar
  28. Montero, V.M. and Wenthold, R.J., 1989, Quantitative immunogold analysis reveals high glutamate levels in retinal and cortical synaptic terminals in the lateral geniculate nucleus of the macaque, Neuroscience, 31:639–647.PubMedCrossRefGoogle Scholar
  29. Moore, J.K. and Moore, R.Y., 1987, Glutamic acid decarboxylase-like immunoreactivity in brainstem auditory nuclei of the rat, J. Comp. Neurol., 260:157–74.PubMedCrossRefGoogle Scholar
  30. Moore, JK., 1986, Cochlear nuclei: Relationship to the auditory nerve, in: “Neurobiology of Hearing: The Cochlea”, R.A. Altschuler, R.P. Bobbin, D.G. Hooffman eds., pp. 283–301, Raven Press, New York.Google Scholar
  31. Mugnaini, E., Osen, K.K., Dahl, A.L., Friedrich V.L., Jr. and Korte, G., 1980, Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat and mouse, J. Neurocytol., 9:537–570.PubMedCrossRefGoogle Scholar
  32. Oberdorfer, M.D., Parakkal, M.H., Altschuler, R.A. and Wenthold, R.J., 1988, Ultrastructural localization of GABA-immunoreactive terminals in the anteroventral cochlear nucleus of the guinea pig, Hearing Res., 33:229–238.CrossRefGoogle Scholar
  33. Oliver, D.L., Potashner, S.J., Jones, D.R. and Morest, D.K., 1983, Selective labeling of spiral ganglion and granule cells with D-aspartate in the auditory system of cat and guinea pig, J. Neurosci., 3:455–468.PubMedGoogle Scholar
  34. Ottersen, O.P., 1989, Quantitative electron microscopic immunocytochemistry of neuroactive amino acids, Anat. Embryol., 180:1–15.PubMedCrossRefGoogle Scholar
  35. Ottersen, O.P. and Storm-Mathisen, J., 1987, Localization of amino acid neurotransmitters by immunocytochemistry, Trends in Neurosci., 10:250–255.CrossRefGoogle Scholar
  36. Ottersen, O.P., Storm-Mathissen, J., Madsen, S., Skumlien, S. and Sromhaug, J., 1989, Evaluation of the immunocytochemical method for amino acids, Med. Biol., 64: 147–158.Google Scholar
  37. Pappas, G.D. and Waxman, S.G., 1972, Synaptic fine structure-morphological correlates of chemical and electrotonic transmission, in: “Structure and Function of Synapses”, G.D. Pappas, D.K. Purpura, eds., pp. 1–44, Raven Press, New York.Google Scholar
  38. Potashner, S.J., 1983, Uptake and release of D-aspartate in the guinea pig cochlear nucleus, J. Neurochem., 41:1094–1109.PubMedCrossRefGoogle Scholar
  39. Potashner, S.J., Morest, D.K., Oliver, D.L. and Jones, D.R., 1985, Identification of glutamatergic and aspartatergic pathways in the auditory pathway, in: “Auditory Biochemistry”, D.G. Drescher, ed., pp. 141–162, C. Thomas, Springfield.Google Scholar
  40. Schwartz, A.M. and Gulley, R.L., 1978, Non-primary afferents to the principal cells of the rostral anteroventral cochlear nucleus of the guinea pig, Am. J. Anat., 153:489–508.PubMedCrossRefGoogle Scholar
  41. Schwartz, I.R., 1981, The differential distribution of label following uptake of 3H-labeled amino acids in the dorsal cochlear nucleus of the cat. An autoradiographic study, Exp. Neurol., 73:601–617.PubMedCrossRefGoogle Scholar
  42. Somogyi, P., Halasy, K., Somogyi, J., Storm-Mathisen, J. and Ottersen, O.P., 1986, Quantification of immunogold labelling reveals enrichment of glutamate in mossy and parallel fibre terminals in cat cerebellum, Neuroscience, 19:1045–1550.PubMedCrossRefGoogle Scholar
  43. Somogyi, P., Hodgson, A.J., Chubb, I.W., Penke, B. and Erdei, A., 1985, Antisera to gamma-aminobutyric acid application to the central nervous system, J. Histochem. Cytochem., 33:240–248.Google Scholar
  44. Somogyi, P. and Hodgson, A.J., 1985, Antiserum to gamma-aminobutyric acid III. Demonstration of GABA in Golgi-impregnated neurons and in conventional electron microscopic sections of cat striate cortex, J. Histochem. Cytochem., 33:249 257.PubMedGoogle Scholar
  45. Tolbert, L.P. and Morest, D.K., 1982, The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: electron microscopy, Neuroscience, 7:3053–3067.PubMedCrossRefGoogle Scholar
  46. Uchizono, K., 1965, Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat, Nature, 207:642–643.PubMedCrossRefGoogle Scholar
  47. van den Pol, A.N., 1984, Colloidal gold and biotin-avidin conjugates as ultrastructural markers for neural antigens, Q. J. Exp. Physiol., 69:1–33.PubMedGoogle Scholar
  48. van den Pol, AN, 1989, Neuronal imaging with colloidal gold, J. Microsc, 155 (Pt l):27–59.PubMedCrossRefGoogle Scholar
  49. Wanaka, A., Shiotani, Y., Kiyama, H., Matsuyama, T., Kamada, T., Shiosaka, S. and Tohyama, M., 1987, Glutamate-like immunoreactive structures in primary sensory neurons in the rat detected by a specific antiserum against glutamate, Exp. Brain Res., 65:691–694.PubMedCrossRefGoogle Scholar
  50. Wenthold, R.J., 1985, Glutamate and aspartate as neurotransmitters of the auditory nerve, in: “Auditory Biochemistry”, D.G. Drescher, ed., pp. 125–140, C. Thomas, Springfield.Google Scholar
  51. Wenthold, R.J., Huie, D., Altschuler, R.A. and Reeks, K.A., 1987, Glycine immunoreactivity localized in the cochlear nucleus and superior olivary complex, Neuroscience, 22:897–912.PubMedCrossRefGoogle Scholar
  52. Wenthold, R.J., Zempel, J.M., Parakkal, M.H., Reeks, K.A. and Altschuler, R.A., 1986, Immunocytochemical localization of GABA in the cochlear nucleus of the guinea pig, Brain Res., 380:7–18.PubMedCrossRefGoogle Scholar
  53. Wickesberg, R.E. and Oertel, D., 1989, Auditory nerve neurotransmitter acts on a kainate receptor: evidence from intracellular recordings in brain slices from mice, Brain Res., 486:39–46.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • José M. Juiz
    • 1
  • Maria E. Rubio
    • 1
  • Robert H. Helfert
    • 2
  • Richard A. Altschuler
    • 3
  1. 1.Dpt. of Histology and Institute of NeuroscienceUniversity of AlicanteAlicanteSpain
  2. 2.Dpts. of Surgery and PharmacologySouthern Illinois UniversitySpringfieldUSA
  3. 3.Kresge Hearing Research InstituteUniversity of MichiganAnn ArborUSA

Personalised recommendations