3CD Cleavage of the Poliovirus P1 Precursor: A Model for Complex Proteinase/Substrate Interactions

  • Wade S. Blair
  • Xiaoyu Li
  • Bert L. Semler
Part of the NATO ASI Series book series (NSSA, volume 240)


Eukaryotic viruses have evolved numerous strategies of replication that allow the propagation of their nucleic acid genomes in a potentially hostile host environment. Such strategies often include the limitation of genomic RNA or DNA sequences to only those essential, the production of multiple gene products from a single viral mRNA species, the use of host-cellular replication and translation machinery, and the selective inhibition of host-cell gene expression. Storage of viral genetic information in the form of ribonucleic acid is an additional replication strategy employed by a subgroup of eukaryotic viruses (RNA viruses). Most RNA viruses (excluding orthomyxoviruses and retroviruses) have eliminated the need for a nuclear phase in their viral life cycles, thus facilitating viral gene expression. An instructive example of a well-studied RNA virus which incorporates all of the above mentioned strategies to orchestrate a productive and efficient replication cycle is poliovirus, a member of the family Picornaviridae. Poliovirus is a small, positive-sense RNA virus that encodes at least 14 distinct viral gene products within a monocistronic genome of 7.5 kb (Rueckert, 1985; Lawson and Semler, 1990). This is achieved by translation of the viral mRNA into a single polyprotein that is subsequently cleaved into mature structural and nonstructural viral proteins by viral proteinases 2A and 3C. Proteinase 2A specifically recognizes a tyrosine-glycine (Y-G) amino acid pair and completes the initial cleavage on the polyprotein at the P1/P2 junction (Toyoda et al., 1986). The remainder of the important cleavages within the poliovirus P2 and P3 regions of the polyprotein is mediated by proteinase 3C, which exclusively recognizes glutamine-glycine (Q-G) amino acid pairs (Semler et al., 1981; Emini et al., 1982; Hanecak et al., 1982; Larsen et al., 1982). Cleavage of the P1 precursor requires polymerase sequences (3D) as well as 3C sequences in the form of proteinase 3CD (Jore et al. 1988; Ypma-Wong et al., 1988a). The poliovirus genomic RNA is also characterized by a large untranslated region (∼740 nt) located at the 5′ end (5′ UTR). The 5′ UTR facilitates the translation of viral mRNA by host-cell translation machinery via a novel cap-independent mechanism of translation initiation (Pelletier et al., 1988; Trono et al., 1988). The use of a cap-independent translation initiation mechanism allows for the selective inhibition of host-cell cap-dependent translation of eukaryotic mRNAs, an event mediated by proteinase 2A (Etchison et al., 1982; Sun and Baltimore, 1989).


Cleavage Site Capsid Protein Alanine Residue Amino Acid Pair Amino Acid Insertion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ansardi, D. C., Porter, D. C., and Morrow, C. D., 1992, Myristylation of poliovlrus capsid precursor-Pi is required for assembly of subviral particles, J. Virol. 66:4556–4563.PubMedGoogle Scholar
  2. Bazan, J. F., and Fletterick, R J., 1988, Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications, Proc. Natl. Acad. Sci. USA. 85:7872–7876.PubMedCrossRefGoogle Scholar
  3. Blair, W. S., Hwang, S.-S., Ypma-Wong, M. F., and Semler, B. L., 1990. A mutant poliovirus containing a novel proteolytic cleavage site in VP3 is altered in viral maturation, J. Virol. 64:1784–1793.Google Scholar
  4. Blair, W. S., and Semler, B. L., 1991, Role for the P4 amino acid residue in substrate utilization by the poliovirus 3CD proteinase. J. Virol. 65:6111–6123.PubMedGoogle Scholar
  5. Burns, C. C., Lawson, M.A., Semler, B. L., and Ehrenfeld. E., 1989, Effects of mutations in poliovirus 3Dpol on RNA polymerase activity and on polyprotein cleavage, J. Virol. 63:4866–4874.PubMedGoogle Scholar
  6. Charini, W. A., Burns, C. C., Ehrenfeld, E., and Semler, B. L., 1991, Trans rescue of a mutant poliovirus RNA polymerase function, J. Virol. 65:2655–2665.PubMedGoogle Scholar
  7. Chow, M., Newman, J. F. E., Filman, D., Hogle, J. M., Rowlands. D. J., and Brown, F., 1987, Myristylation of Picornavirus capsid protein VP4 and its structural significance. Nature 327:482–486.PubMedCrossRefGoogle Scholar
  8. Clarke, B. E., and Sangar, D. V., 1988, Processing and assembly of foot-and-mouth disease virus proteins using subgenomic RNA, J. Gen. Virol. 69:2313–2325.PubMedCrossRefGoogle Scholar
  9. Compton, S. R., Nelsen, B., and Kirkegaard, K., 1990. Temperature-sensitive poliovirus mutant fails to cleave VPO and accumulates provirions. J. Virol. 64:4067–4075.PubMedGoogle Scholar
  10. Cordingley. M. G., Callahan, P. L., Sardana. V. V., Garsky. V. M., and Colonno. R J., 1990, Substrate requirements of human rhinovirus 3C protease for peptide cleavage in vitro, J. Biol. Chem. 265:9062–9065.PubMedGoogle Scholar
  11. Dewalt. P. G., Lawson, M. A., Colonno, R. J., and Semler, B., L., 1989, Chimeric picornavlrus polyproteins demonstrate a common 3C proteinase substrate specificity, J. Virol. 63:3444–3452.PubMedGoogle Scholar
  12. Emini, E. A., Elzinga, M., and Wimmer, E., 1982, Carboxy-terminal analysis of poliovirus proteins: termination of poliovirus RNA translation and location of unique poliovirus polyprotein cleavage sites, J. Virol. 42:194–199.PubMedGoogle Scholar
  13. Etchison, D., Milbum, S. C., Edery, I., Sonenberg, N., and Hershey, J. W. B., 1982, Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220, 000 Dalton polypeptide associated with eukaryotic initiation factor 3 and a cap binding protein complex, J. Biol. Chem. 257:14806–14810.PubMedGoogle Scholar
  14. Fernandez-Tomas, C. B., and Baltimore, D., 1973, Morphogenesis of poliovirus II. Demonstration of a new intermediate, the provirion, J. Virol. 12:1122–1130.PubMedGoogle Scholar
  15. Gorbalenya, A. E., Dochenko, A. P., Blinov, V. M., and Koonin, E. V., 1989, Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases: a distinct protein superfamily with a common structural fold, FEBS Lett. 243:103–114.PubMedCrossRefGoogle Scholar
  16. Guttman, N., and Baltimore, D., 1977, Morphogenesis of poliovirus IV. Existence of particles sedimenting at 150S and having the properties of provirion, J. Virol. 23:363–367.PubMedGoogle Scholar
  17. Hanecak, R., Semler, B. L., Anderson, C. W., and Wimmer, E., 1982, Proteolytic processing of poliovirus polypeptides: Antibodies to polypeptide P3-7c inhibit cleavage at glutamine-glycine pairs, Proc. Natl Acad. Sci. USA 79:3973–3977.PubMedCrossRefGoogle Scholar
  18. Hellen, C. U. T., and Wimmer, E., 1992, Maturation of poliovirus capsid proteins. Virology 187:391–397.PubMedCrossRefGoogle Scholar
  19. Hogle, J. M., Chow, M., and Filman, D. J, 1985, Three-dimensional structure of poliovirus at 2.9 Å resolution, Science 229:1358–1365.PubMedCrossRefGoogle Scholar
  20. Jore, J., De Geus, B., Jackson, R J., Pouwels, P. H., and Enger-Valk, B. E., 1988, Poliovirus protein 3CD is the active protease for processing of the precursor protein in vitro, J. Gen. Virol. 69:1627–1636.PubMedCrossRefGoogle Scholar
  21. Krausslich, H. G., Holscher, C., Reuer, Q., Harber J., and Wimmer, E., 1990, Myristoylation of the poliovirus polyprotein is required for proteolytic processing on the capsid and for viral infectivity. J. Virol. 64:2433–2436.PubMedGoogle Scholar
  22. Larsen, G. R., Anderson, C. W., Domer, A. J., Semler, B. L., and Wimmer, E., 1982, Cleavage sites within the poliovirus capsid protein precursors, J. Virol. 41:340–344.PubMedGoogle Scholar
  23. Lawson, M. A., Dasmahapatra, B., and Semler, B. L., 1990, Species-specific substrate interaction of Picornavirus 3C proteinase suballelic exchange mutants, J. Biol. Chem. 265:15920–15931.PubMedGoogle Scholar
  24. Lawson, M. A. and B. L. Semler, 1990, Picornavlrus protein processing: enzymes, substrates, and genetic regulation, Curr. Top. Microbiol. Immunol. 161:49–87.PubMedCrossRefGoogle Scholar
  25. Lawson, M. A., and Semler, B. L., 1991, Poliovirus thiol proteinase 3C can utilize a serine nucleophile within the putative catalytic triad, Proc. Natl. Acad. Sci. USA 88:9919–9923.PubMedCrossRefGoogle Scholar
  26. Marc, D., Masson, G., Girard, M., and van der Werf, S., 1990, Lack of myristoylation of poliovirus capsid polypeptide VPO prevents the formation of virions or results in the assembly of noninfectious virus particles, J. Virol. 64:4099–4107.PubMedGoogle Scholar
  27. Marc, D., Girard, M., and van der Werf, S., 1991, A gly1 to ala substitution in poliovirus capsid protein VPO blocks its myristoylation and prevents viral assembly, J. Gen. Virol. 72:1151–1157.PubMedCrossRefGoogle Scholar
  28. Mirzayan, C., Ingraham, R., and Wimmer, E., 1991, Specificity of the polioviral proteinase 3C towards genetically engineered cleavage sites in the viral capsid, J. Gen. Virol. 137:1159–1163.CrossRefGoogle Scholar
  29. Moscufo, N., Simons, J., and Chow, M., 1991. Myristoylation is important at multiple stages in poliovirus assembly, J. Virol. 65:2372–2380.PubMedGoogle Scholar
  30. Nicklin, M. J. H., Toyoda, H., Murray, M. G., and Wimmer, E., 1986, Proteolytic processing in the replication of polio and related viruses. Biotechnology 4:33–42.CrossRefGoogle Scholar
  31. Nicklin, M. J. H., Krausslich, H. G., Toyoda. H., Dunn, J. J., and Wimmer, E., 1987, Poliovirus polypeptide precursors: expression in vitro and processing by exogenous 3C and 2A proteinases. Proc. Natl. Acad. Sci. USA 84:4002–4006.PubMedCrossRefGoogle Scholar
  32. Nicklin, M. J. H., Harris. K. S., Pallai, P. V., and Wimmer, E., 1988, Poliovirus proteinase 3C: Large-scale expression, purification, and specific cleavage activity on natural and synthetic substrates in vitro. J. Virol. 62:4586–4593.PubMedGoogle Scholar
  33. Pallai. P. V., Burkhardt. F., Skoog, M., Schreiner, K., Baxt, P., Cohen. K. A., Hansen. G., Palladino. D. E. H., Harris, K. S., Nicklin, M. J., and Wimmer, E., 1989, Cleavage of synthetic peptides by purified poliovirus 3C proteinase. J. Biol. Chem. 264:9738–9741.PubMedGoogle Scholar
  34. Parks, G. D., Duke, G. M., and Palmenberg, A. C., 1986. Encephalomyocarditis virus 3C protease: efficient cell-free expression from clones which link viral 5′ noncoding sequences to the P3 region, J. Virol. 60:376–384.PubMedGoogle Scholar
  35. Parks, G. D., and Palmenberg, A. C., 1987. Site specific mutations at a Picornavirus VP3/VP1 cleavage site disrupt in vitro processing and assembly of capsid precursors. J. Virol. 61:3680–3687.PubMedGoogle Scholar
  36. Parks, G. D., J. C. Baker, and Palmenberg. A. C., 1989, Proteolytic cleavage of encephalomyocarditis virus capsid region substrates by precursors to the 3C enzyme, J. Virol. 63:1054–1058.PubMedGoogle Scholar
  37. Paul, A., Schultz, A., Pincus, S. E., Oroszlan, S., Wimmer, E., 1987, Capsid protein VP4 of poliovirus is N-myristoylated, Proc. Natl. Acad. Sci. USA 84:7827–7831.PubMedCrossRefGoogle Scholar
  38. Pelletier, J., Kaplan, G., Racaniello, V. R., and Sonenberg, N., 1988, Cap-independent translation of poliovirus mRNA is conferred by sequence elements within the 5′ noncoding region, Mol. Cell. Biol. 8:1103–1112.PubMedGoogle Scholar
  39. Putnak, J. R., and Phillips. B. A., 1981, Picornaviral structure and assembly, Microbiol. Rev. 45:287–315.PubMedGoogle Scholar
  40. Reynolds, C., Bimby, D., and Chow, M., 1992, Folding and processing of the capsid protein precursor P1 is kinetically retarded in neutralization site 3B mutants of poliovirus, J. Virol. 66:1641–1648.PubMedGoogle Scholar
  41. Rueckert, R. R., 1985, Picomaviruses and their replication, In: “Virology,” B. N. Fields, ed., Raven Press, New York.Google Scholar
  42. Semler, B. L., Anderson, C. W., Kitamura, N., Rothberg. P. G., Wishart, W. L. and Wimmer, E., 1981, Poliovirus replication proteins: RNA sequence encoding P3-1b and the sites of proteolytic processing, Proc. Natl. Acad. Sci. USA 78:3464–3468.PubMedCrossRefGoogle Scholar
  43. Semler, B. L., Johnson, V. J., Dewalt. P. G., and Ypma-Wong, M. F., 1987, Site specific mutagenesis of cDNA clones expressing a poliovirus proteinase, J. Cell. Biochem. 33:39–51.PubMedCrossRefGoogle Scholar
  44. Sun, X. H. and Baltimore, D., 1989, Human immunodeficiency virus tat-activated expression of poliovirus protein 2A inhibits mRNA translation, Proc. Natl. Acad. Sci. USA 86:2143–2146.PubMedCrossRefGoogle Scholar
  45. Toyoda, H., Nicklin, M. J. H., Murray, M. G., Anderson, C. W., Dunn, J. J., Studier, F. W., and Wimmer, E., 1986, A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell 45:761–770.PubMedCrossRefGoogle Scholar
  46. Trono, D., Pelletier, J., Sonenberg, N., and Baltimore, D., 1988, Translation in mammalian cells of a gene linked to the poliovirus 5′ noncoding region, Science 241:445–448.PubMedCrossRefGoogle Scholar
  47. Vakharia, V. N., Devaney, M. A., Moore, D. M., Dunn, J. J., and Grubman, M. J., 1987, Proteolytic processing of foot-and-mouth disease virus polyproteins expressed in a cell-free system from clone-derived transcripts, J. Virol. 61:3199–3207.PubMedGoogle Scholar
  48. Ypma-Wong M. F., and Semler, B. L., 1987a, In vitro molecular genetics as a tool for determining the differential cleavage specificities of the poliovirus 3C proteinase. Nucleic Acids Res. 15:2069–2088.PubMedCrossRefGoogle Scholar
  49. Ypma-Wong, M. F., and Semler, B. L., 1987b, Processing determinants required for in vitro cleavage of the poliovirus P1 precursor to capsid proteins, J. Virol. 61:3181–3189.PubMedGoogle Scholar
  50. Ypma-Wong, M. F., Dewalt, P. G., Johnson, V. H., Lamb, J. G., and Semler, B. L., 1988a, Protein 3CD is the major poliovirus proteinase responsible for cleavage of the P1 precursor. Virology 166:265–270.PubMedCrossRefGoogle Scholar
  51. Ypma-Wong, M. F., Filman. D. J., Hogle, J. M., and Semler, B. L., 1988b, Structural domains of the poliovirus polyprotein are major determinants for proteolytic cleavage at gln-gly pairs, J. Biol. Chem. 63:17846–17856.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Wade S. Blair
    • 1
  • Xiaoyu Li
    • 1
  • Bert L. Semler
    • 1
  1. 1.Department of Microbiology and Molecular GeneticsUniversity of California IrvineUSA

Personalised recommendations