A Comparison of the Properties of Human P53 Mutant Alleles

  • Robin S. Quartin
  • Arnold J. Levine
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 330)

Abstract

p53 is a cellular-encoded phosphoprotein first identified in protein complexes with the large tumor (T) antigen of simian virus 40 (SV40) (Linzer and Levine, 1979; Lane and Crawford, 1979). High levels of p53 protein have been detected in both embryonal carcinoma cells and chemically induced transformed cells using antisera from animals with SV40-induced tumors or immunized with these tumorigenic lines (Linzer and Levine, 1979; DeLeo et al., 1979). In addition, humans with cancer have been shown to have circulating anti-p53 antibodies (Crawford et al., 1982; Caron de Fromental et al., 1987). Thus, p53 was termed a tumor antigen.

Keywords

Leukemia Glycine Sarcoma Arginine Alanine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, H., Bar-Eli, M., Advani, S.H., Benchimol, S. and Cline, M.J. Alterations in the p53 gene and the clonal evolution of the blast crisis of chronic myelocytic leukemia. Proc. Natl. Acad. Sci. U.S.A. 86:6783, 1989.PubMedCrossRefGoogle Scholar
  2. Baker, S.J., Fearon, E.R., Nigro, J.M., Hamilton, S.R., Preisinger, A.C., Jessup, J.M., van Tuinen, P., Ledbetter, D.H., Barker, D.F., Nakamura, Y., White, R. and Vogelstein, B. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244:217, 1989.PubMedCrossRefGoogle Scholar
  3. Baker, S.J., Markowitz, S., Fearon, E.R., Wilson, J.K.U., and Vogelstein, B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249:912, 1990.PubMedCrossRefGoogle Scholar
  4. Bartek, J., Iggo, R., Gannon, J., and Lane, D. Genetic and immunological analysis of mutant p53 in human breast cancer cell lines. Oncogene 5:893, 1990.PubMedGoogle Scholar
  5. Ben-David, Y., Prideaux, V.R., Chow, V., Benchimol, S. and Bernstein, A. Inactivation of the p53 oncogene by internal deletion or retroviral integration in erythroleukemia cell lines induced by Friend leukemia virus. Oncogene 3:179, 1988.PubMedGoogle Scholar
  6. Benchimol, S., Pirn, D. and Crawford, L. Radioimmunoassay of the cellular protein p53 in mouse and human cell lines. EMBO J. 1:1055, 1982.PubMedGoogle Scholar
  7. Caron de Fromental, C., May-Levin, F., Mouriesse, H., Lemerle, J., Chandrasekaran, K. and May, P. Presence of circulating antibodies against cellular protein p53 in a notable proportion of children with B-cell lymphoma. Int. J. Cancer 39:185, 1987.CrossRefGoogle Scholar
  8. Chow, V., Ben-David, Y., Bernstein, A., Benchimol, S. and Mowat, M. Multistage Friend erythroleukemia: Independent origin of tumor clones with normal or rearranged p53 cellular oncogene. J. Virol. 61:2777, 1987.PubMedGoogle Scholar
  9. Crawford, L.V., Pirn, D.C., and Bulbrook, R.D. Detection of antibodies against the cellular protein p53 in sera from patients with breast cancer. Int. J. Cancer 30:403, 1982.PubMedCrossRefGoogle Scholar
  10. DeLeo, A.B., Jay, G., Appella, E., Dubois, G.C., Law, L.W. and Old, L.J. Detection of a transformation related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc. Natl Acad. Sci. USA. 76:2420, 1979.PubMedCrossRefGoogle Scholar
  11. Diller, L., Kassel, J., Nelson, C.E., Gryka, M.A., Litwak, G., Gebhardt, M., Bressac, B., Ozturk, M., Baker, S.J., Vogelstein, B., and Friend, S.H. p53 Suppresses the growth of osteosarcoma cells and blocks cell cycle progression. Mol. Cell. Biol. 10:5772, 1990.PubMedGoogle Scholar
  12. Dippold, W.G., Jay, G., DeLeo, A.B., Khoury, G. and Old, L.J. p53 transformationrelated protein: Detection by monoclonal antibody in mouse and human cells. Proc. Natl. Acad. Sci. USA 78:1695, 1981.PubMedCrossRefGoogle Scholar
  13. Eliyahu, D., Raz, A., Gruss, P., Givol, D. and Oren, M. Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature 312:646, 1984.PubMedCrossRefGoogle Scholar
  14. Eliyahu, D., Goldfinger, N., Pinhasi-Kimhi, O., Shaulsky, G., Skurnik, Y., Arai, N., Rotter, V. and Oren, M. Meth A fibrosarcoma cells express two transforming mutant p53 species. Oncogene 3:313, 1988.PubMedGoogle Scholar
  15. Eliyahu, D., Michalovitz, D., Eliyahu, S., Pinhasi-Kimhi, O. and Oren, M. Wild-type p53 can inhibit oncogene-mediated focus formation. Proc. Natl. Acad. Sci. USA 86:8763, 1989.PubMedCrossRefGoogle Scholar
  16. Fearon, E.R. and Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61:759, 1990.PubMedCrossRefGoogle Scholar
  17. Fields, S. Presence of a potent transcription activating sequence in the p53 protein. Science 249:1046, 1990.PubMedCrossRefGoogle Scholar
  18. Finlay, C.A., Hinds, P.W., Tan, T.-H., Eliyahu, D., Oren, M. and Levine, A.J. Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol. Cell. Biol. 8:531, 1988.PubMedGoogle Scholar
  19. Finlay, C.A., Hinds, P.W. and Levine, A.J. The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1083, 1989.PubMedCrossRefGoogle Scholar
  20. Halevy, O., Michalovitz, D. and Oren, M. Different tumor-derived p53 mutants exhibit distinct biological activities. Science 250:113, 1990.PubMedCrossRefGoogle Scholar
  21. Hinds, P., Finlay, C., Frey, A. and Levine, A.J. Immunological evidence for the association of p53 with a heat shock protein, hsc70, in p53 plus ras transformed cell lines. Mol. Cell. Biol. 7:2863, 1987.PubMedGoogle Scholar
  22. Hinds, P., Finlay, C. and Levine, A.J. Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J. Virol. 63:739, 1989.PubMedGoogle Scholar
  23. Hinds, P.W., Finlay, C.A., Quartin, R.S., Baker, S.J., Fearon, E.R., Vogelstein, B. and Levine, A.J. Mutant p53 DNAs from human colorectal carcinomas can cooperate with ras in transforming primary rat cells: A comparison of the “hot spot” mutant phenotypes. Cell Growth Differ. 1:571, 1990.PubMedGoogle Scholar
  24. Iggo, R., Gatter, K., Bartek, J., Lane, D. and Harris, A.L. Increased expression of mutant forms of p53 oncogene in primary lung cancer. The Lancet 335:675, 1990.CrossRefGoogle Scholar
  25. Jenkins, J.R., Rudge, K. and Currie, G.A. Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature 312:651, 1984.PubMedCrossRefGoogle Scholar
  26. Jenkins, J.R., Rudge, K., Chumakov, P. and Currie, G.A. The cellular oncogene p53 can be activated by mutagenesis. Nature 317:816, 1985.PubMedCrossRefGoogle Scholar
  27. Kelman, Z., Prokocimer, M., Peller, S., Kahn, Y., Rechavi, G., Manor, Y., Cohen, A. and Rotter, V. Rearrangements in the p53 gene in Philadelphia chromosome positive chronic myelogenous leukemia, Blood 74:2318, 1989.PubMedGoogle Scholar
  28. Koeffler, H.P., Miller, C., Nicolson, M.A., Ranyard, J. and Bosselman, R.A. Increased expression of p53 protein in human leukemia cells. Proc. Natl. Acad. Sci. USA 83:4035, 1986.PubMedCrossRefGoogle Scholar
  29. Lalande, M. A reversible arrest point in the late Gl phase of the mammalian cell cycle. Expt. Cell Res., 186:332, 1990.CrossRefGoogle Scholar
  30. Lane, D.P. and Crawford, L.V. T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261, 1979.PubMedCrossRefGoogle Scholar
  31. Levine, A.J., Finlay, C.A. and Hinds, P.W. The p53 proto-oncogene and its product, in: “Common Mechanisms of Transformation by Small DNA Tumor Viruses,” edited by L.P. Villarreal. American Society for Microbiology, Washington, DC, 1989.Google Scholar
  32. Levine, A.J. The p53 protein and its interactions with the oncogene products of the small DNA tumor viruses. Virology 177:419, 1990.PubMedCrossRefGoogle Scholar
  33. Linzer, D.I.H. and Levine, A.J. Characterization of a 54,000 MW cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17:43, 1979.PubMedCrossRefGoogle Scholar
  34. Malkin, D., Li, F.P., Strong, L.C., Fraumeni, J.F., Nelson, C.E., Kim, D.H., Kassel, J., Gryka, M.A., Bischoff, F.Z., Tainsky, M.A. and Friend, S.H. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233, 1990.PubMedCrossRefGoogle Scholar
  35. Masuda, H., Miller, C., Keoffler, H.P., Battifora, H. and Cline, M.J. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc. Natl. Acad. Sci. USA. 84:7716, 1987.PubMedCrossRefGoogle Scholar
  36. Mercer, W.E., Nelson, D., DeLeo, A.B., Old, L.J. and Baserga, R. Microinjection of monoclonal antibody to protein p53 inhibits serum-induced DNA synthesis in 3T3 cells. Proc. Natl Acad. Sci. USA. 79:6309, 1982.PubMedCrossRefGoogle Scholar
  37. Mercer, W.E., Avignolo, C. and Baserga, R. Role of the p53 protein in cell proliferation as studied by microinjection of monoclonal antibodies. Mol. Cell. Biol. 4:276, 1984.PubMedGoogle Scholar
  38. Mercer, W.F., Shields, M.T., Amin, M., Suave, G.J., Appella, E., Ullrich, S.J., and Romano, J.W. Antiproliferative effects of wild-type human p53. J. Cell. Biochem. 14C:285, 1990.Google Scholar
  39. Milner, J. and Milner, S. SV40-53K antigen: A possible role for p53 in normal cells. Virology 112:785, 1981.PubMedCrossRefGoogle Scholar
  40. Mowat, M., Cheng, A., Kimura, N., Bernstein, A. and Benchimol, S. Rearrangements of the cellular p53 gene in erythroleukaemia cells transformed by Friend virus. Nature 314:633, 1985.PubMedCrossRefGoogle Scholar
  41. Munroe, D.G., Rovinski, B., Bernstein, A. and Benchimol, S. Loss of a highly conserved domain on p53 as a result of gene deletion during Friend virus-induced erythroleukemia. Oncogene 2:621, 1988.PubMedGoogle Scholar
  42. Nigro, J.M., Baker, S.J., Preisinger, A.C., Jessup, J.M., Hostetter, R., Cleary, K., Bigner, S.H., Davidson, N., Baylin, S., Devilee, P., Glover, T., Collins, F.S., Weston, A., Modali, R., Harris, C.C. and Vogelstein, B. Mutations in the p53 gene occur in diverse human tumour types. Nature 342:705, 1989.PubMedCrossRefGoogle Scholar
  43. Oren, M., Maltzman, W. and Levine, A.J. Post-translational regulation of the 54K cellular tumor antigen in normal and transformed cells. Mol. Cell. Biol. 1:101, 1981.PubMedGoogle Scholar
  44. Parada, L.F., Land, H., Weinberg, R.A., Wolf, D. and Rotter, V. Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature 312:649, 1984.PubMedCrossRefGoogle Scholar
  45. Pinhasi-Kimhi, O., Michalovitz, D., Ben-Zeev, A. and Oren, M. Specific interaction between the p53 cellular tumor antigen and major heat shock proteins. Nature 320:182, 1986.PubMedCrossRefGoogle Scholar
  46. Raycroft, L., Wu, H., and Lozano, G. Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249:1049, 1990.PubMedCrossRefGoogle Scholar
  47. Reich, N.C., Oren, M. and Levine, A.J. Two distinct mechanisms regulate the levels of a cellular tumor antigen, p53. Mol. Cell. Biol. 3:2143, 1983.PubMedGoogle Scholar
  48. Rogel, A., Popliker, M., Webb, C.G. and Oren, M. p53 cellular tumor antigen: Analysis of mRNA levels in normal adult tissues, embryos and tumors. Mol. Cell. Biol. 5:2851, 1985.PubMedGoogle Scholar
  49. Rovinski, B., Munroe, D., Peacock, J., Mowat, M., Bernstein, A. and Benchimol, S. Deletion of 5’-coding sequences of the cellular p53 gene in mouse erythroleukemia: A novel mechanism of oncogene regulation. Mol. Cell. Biol. 7:847, 1987.PubMedGoogle Scholar
  50. Rovinski, B. and Benchimol, S. Immortalization of rat embryo fibroblasts by the cellular p53 oncogene. Oncogene 2:445, 1988.PubMedGoogle Scholar
  51. Sarnow, P., Ho, Y.S., Williams, J. and Levine, A.J. Adenovirus Elb-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54kd cellular protein in transformed cells. Cell 28:387, 1982.PubMedCrossRefGoogle Scholar
  52. Shohat, O., Greenberg, M., Reisman, D., Oren, M. and Rotter, V. Inhibition of cell growth mediated by plasmids encoding p53 anti-sense. Oncogene 1:277, 1987.PubMedGoogle Scholar
  53. Soussi, T., deFromental, C.C., Mechali, M., May, P. and Kress, M. Cloning and characterization of a cDNA from Xenopus laevis coding for a protein homologous to human and murine p53. Oncogene 1:71, 1987.PubMedGoogle Scholar
  54. Sturzbecher, H.-W., Chumakov, P., Welch, W.J. and Jenkins, J.R. Mutant p53 proteins bind hsp72/73 cellular heat shock-related proteins in SV40-transformed monkey cells. Oncogene 1:201, 1987.PubMedGoogle Scholar
  55. Takahashi, T., Nau, M.M., Chiba, I., Birrer, M.J., Rosenberg, R.K., Vinocour, M., Levitt, M., Pass, H., Gazdar, A.D. and Minna, J.D. p53: A frequent target for genetic abnormalities in lung cancer. Science 246:491, 1989.PubMedCrossRefGoogle Scholar
  56. Thomas, R., Kaplan, L., Reich, N., Lane, D.P. and Levine, A.J. Characterization of human p53 antigens employing primate specific monoclonal antibodies. Virology 131:502, 1983.PubMedCrossRefGoogle Scholar
  57. Werness, B.A., Levine, A.J. and Howley, P.M. The E6 proteins encoded by human papillomavirus types 16 and 18 can complex p53 in vitro. Science 248:76, 1990.PubMedCrossRefGoogle Scholar
  58. Wolf, D., Harris, N. and Rotter, V. Reconstitution of p53 expression in a nonproducer Ab-MuLV-transformed cell line by transfection of a functional p53 gene. Cell 38:119, 1984.PubMedCrossRefGoogle Scholar
  59. Wolf, D. and Rotter, V. Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL-60 cells. Proc. Natl. Acad. Sci. U.S.A. 82:790, 1985.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Robin S. Quartin
    • 1
  • Arnold J. Levine
    • 1
  1. 1.Department of Molecular BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations