Advertisement

Transport Systems in Mycoplasmas

  • Vincent P. Cirillo
Part of the Subcellular Biochemistry book series (SCBI, volume 20)

Abstract

Transport processes are classified on the basis of kinetics and energetics (Figure 1). Using D and L isomers of glucose as examples, simple, Fickian diffusion kinetics are characteristic of unmediated transport which does not discriminate between the D and L isomers. Unmediated transport represents transport through the lipid bilayer. Discrimination between D and L isomers and saturation kinetics are characteristic of mediated transport. Mediated transport is carried out by intrinsic membrane proteins and involves interaction between the solute and the proteins. The classification of mediated transport processes is based on biochemical and energetic criteria. In group translocation, the transported solute is derivatized by a membrane enzyme; in the group translocation of D-glucose, the sugar is transported and phosphorylated in a coordinated process. In carrier transport, the free solute, not a derivative, is transported. Carrier transport is further classified on the basis of energetic criteria. If the free sugar is transported energetically uphill (i.e., against its concentration gradient), it is classified as active transport; if the sugar is transported energetically downhill, it is classified as facilitated diffusion.

Keywords

Fatty Acid Uptake Glycerol Kinase Active Transport Process Secondary Active Transport Mycoplasma Capricolum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, G. F.-L., 1990, Energy coupling in bacterial periplasmic permeases, J. Bacteriol. 172:4133–4137.PubMedGoogle Scholar
  2. Cirillo, V. P., 1979, Transport systems, in: The Mycoplasmas, Volume 1 (M. F. Barile and S. Razin, eds.), Academic Press, New York, pp. 323–349.Google Scholar
  3. Cirillo, V. P., and Razin, S., 1973, Distribution of a phosphoenolpyruvate dependent sugar phospho-transferase system in mycoplasmas, J. Bacteriol. 113:212–217.PubMedGoogle Scholar
  4. Cirillo, V. P., Katzenell, A., and Rottem, S., 1987, Sealed vesicles prepared by fusing Mycoplasma gallisepticum membranes and preformed lipid vesicles, Isr. J. Med. Sci. 23:380–383.PubMedGoogle Scholar
  5. Crane, R. K., 1962, Hypothesis for mechanism of intestinal active transport of sugars. Fed. Proc. 21:891–895.PubMedGoogle Scholar
  6. Dahl, J., 1988, Uptake of fatty acids by Mycoplasma capricolum, J. Bacteriol. 170:2022–2026.PubMedGoogle Scholar
  7. Dahl, J. S., Dahl, C. E., and Bloch, K., 1981, Effect of cholesterol on macromolecular synthesis and fatty acid uptake by Mycoplasma capricolum, J. Biol. Chem. 256:87–91.PubMedGoogle Scholar
  8. Davson, H., 1989. Biological membranes as selective barriers to diffusion of molecules, in: Membrane Transport: People and Ideas (D. C. Tosteson, ed.), Academic Press, New York, pp. 1–49.Google Scholar
  9. Davson, H., and Danielli, J. F., 1943, The Permeability of Natural Membranes, Cambridge University Press, London.Google Scholar
  10. Deutscher, J., and Sauerwald, H., 1986, Stimulation of dihydroxyacetone and glycerol kinase in Streptococcus faecalis by phosphoenolpyruvate-dependent phosphorylation catalyzed by enzyme I and HPr of the phosphotransferase system, J. Bacteriol. 166:829–836.PubMedGoogle Scholar
  11. Fedetov, N. S., Panchenko, L. F., and Tarshis, M. A. 1975a, Transport properties of membrane vesicles from Acholeplasma laidlawii I, Folia Microbiol. (Prague) 20:470–479.CrossRefGoogle Scholar
  12. Fedetov, N. S., Panchenko, L. F., and Tarshis, M. A., 1975b, Transport properties of membrane vesicles from Acholeplasma laidlawii III, Folia Microbiol. (Prague) 20:488–495.CrossRefGoogle Scholar
  13. Harold, F. M., 1986, The Vital Force: A Study of Bioenergetics, Freeman, San Francisco.Google Scholar
  14. Jaffor Ullah, A. H., and Cirillo, V. P., 1976, Mycoplasma phosphoenolpyruvate-dependent sugar phosphotransferase system: Purification and characterization of the phosphocarrier protein, J. Bacteriol. 127:1298–1306.Google Scholar
  15. Jaffor Ullah, A. H., and Cirillo, V. P., 1977, Mycoplasma phosphoenolpyruvate-dependent sugar phosphotransferase system: Purification and characterization of enzyme I, J. Bacteriol. 131:988–996.PubMedGoogle Scholar
  16. Kasahara, M., and Hinkle, P. C., 1977, Reconstitution and purification of the D-glucose transporter from human erythrocytes, J. Biol. Chem. 252:7384–7390.PubMedGoogle Scholar
  17. Konings, W. N., de Vrij, W., Driessen, A. J. M., and Poolman, B., 1987, Primary and secondary transport in gram negative bacteria, in: Sugar Transport and Metabolism in Gram-Positive Bacteria (J. Reizer and A. Peterkofsky, eds.), Halsted Press, New York, pp. 270–294.Google Scholar
  18. Kornberg, H. L., 1976, Genetics in the study of carbohydrate transport by bacteria, J. Gen. Microbiol. 96:1–16.PubMedCrossRefGoogle Scholar
  19. Kundig, W., Gosh, S., and Roseman, S., 1964, Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system, Proc. Natl. Acad. Sci. USA 52:1067–1074.PubMedCrossRefGoogle Scholar
  20. McElhaney, R. N., and Tourtellotte, M., 1969, Mycoplasma membrane lipids: Variations in fatty acid composition, Science 164:433–434.PubMedCrossRefGoogle Scholar
  21. McElhaney, R. N., de Gier, J., van Deenen, L. L. M., and van der Neut-Kok, E. C. M., 1973, The effects of alterations in fatty acid composition and cholesterol content on the nonelectrolyte permeability of Acholeplasma laidlawii cells and derived liposomes, Biochim. Biophys. Acta 298:500–512.PubMedCrossRefGoogle Scholar
  22. Mitchell, P., 1961, Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism, Nature 191:144–148.PubMedCrossRefGoogle Scholar
  23. Mitchell, P., 1966, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Rev. 1:445–502.CrossRefGoogle Scholar
  24. Mugharbil, U., and Cirillo, V. P., 1978, Mycoplasma phosphoenolpyruvate-dependent sugar phosphotransferase system: Glucose-negative mutant and regulation of intracellular cyclic AMP, J. Bacteriol. 133:203–209.PubMedGoogle Scholar
  25. Novotny, M. J., Fredericksen, W. L., Waygood, E. B., and Saier, M. H., Jr., 1985, Allosteric regulation of glycerol kinase by enzyme IIglc of the phosphotransferase system in Escherichia coli and Salmonella typhimurium, J. Bacteriol. 162:810–816.PubMedGoogle Scholar
  26. Nunn, W. D., 1986, A molecular view of fatty acid catabolism in Escherichia coli, Microbiol. Rev. 50:179–192.PubMedGoogle Scholar
  27. Panchenko, L. F., Fedotov, N. S., and Tarshis, M. A., 1975, Transport properties of membrane vesicles from Acholeplasma laidlawii II, Folia Microbiol. (Prague) 20:480–487.CrossRefGoogle Scholar
  28. Pick, U., 1981, Liposomes with large trapping capacity prepared by freezing and thawing of sonicated phospholipid mixtures, Arch. Biochem. Biophys. 212:186–194.PubMedCrossRefGoogle Scholar
  29. Postma, P. W., Epstein, W., Schuitema, A. R. J., and Nelson, S. O., 1984, Interaction between IIIglc of the phosphoenolpyruvate: sugar phosphotransferase system and glycerol kinase of Salmonella typhimurium, J. Bacteriol. 158:351–353.PubMedGoogle Scholar
  30. Razin, S., Gottfried, L., and Rottem, S., 1968, Amino acid transport in Mycoplasma, J. Bacteriol. 5:1685–1691.Google Scholar
  31. Read, B. D., and McElhaney, R. N., 1975, Glucose transport in Acholeplasma laidlawii B: Dependence on the fluidity and physical state of membrane lipids, J. Bacteriol. 123:47–55.PubMedGoogle Scholar
  32. Reizer, J., Saier, M. M., Deutscher, J., Grenier, F., Thompson, J., and Hengstenberg, W., 1988, The phosphoenolpyruvate-sugar phosphotransferase system in gram-positive bacteria: Properties, mechanism and regulation, Crit. Rev. Microbiol. 15:2977–3038.CrossRefGoogle Scholar
  33. Reizer, J., Reizer, A., and Saier, M. H., Jr., 1990, The cellobiose permease of Escherichia coli consists of three proteins and is homologous to the lactose permease of Staphylococcus aureus, Res. Microbiol. 141:1061–1067.PubMedCrossRefGoogle Scholar
  34. Romano, A. H., Eberhard, S. J., Dingle, S. L., and MacDowell, T. D., 1970, Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in bacteria, J. Bacteriol. 104:808–813.PubMedGoogle Scholar
  35. Romano, A. H., Trifone, J. D., and Brustolan, M., 1979, Distribution of the phosphoenolpyruvate: glucose transport system in fermentative bacteria, J. Bacteriol. 139:93–97.PubMedGoogle Scholar
  36. Romano, A. H., Brino, G., Peterkovsky, A., and Reizer, J., 1987, Regulation of β-galactoside transport and accumulation in heterofermentative lactic acid bacteria, J. Bacteriol. 169:5589–5596.PubMedGoogle Scholar
  37. Rottem, S., and Razin, S., 1966, Adenosine triphosphatase activity of Mycoplasma membranes, J. Bacteriol. 92:714–722.PubMedGoogle Scholar
  38. Rottem, S., and Razin, S., 1969, Sugar transport in Mycoplasma gallisepticum, J. Bacteriol. 97:787–792.PubMedGoogle Scholar
  39. Rottem, S., and Shirazi, I., 1990, An arginine-ornithine exchange system in spiroplasmas, IOM Lett. 1:102–103.Google Scholar
  40. Saier, M. H., Jr., 1977, Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: Structural, functional, and evolutionary interrelationships, Bacteriol. Rev. 41:856–871.PubMedGoogle Scholar
  41. Saier, M. H., Jr., 1985, Mechanisms and Regulation of Carbohydrate Transport in Bacteria, Academic Press, New York.Google Scholar
  42. Saier, M. H., Jr., and Reizer, J., 1990, Domain shuffling during evolution of the proteins of the bacterial phosphotransferase system, Res. Microbiol. 141:1033–1038.PubMedCrossRefGoogle Scholar
  43. Shirvan, M. H., Schuldiner, S., and Rottem, S., 1989, Volume regulation in Mycoplasma gallisepticum: Evidence that Na+ is extruded via a primary Na+ pump, J. Bacteriol. 171:4417–4424.PubMedGoogle Scholar
  44. Shirvan, M. H., Schuldiner, S., and Rottem, S., 1990, Role of Na+ cycle in cell volume regulation of Mycoplasma gallisepticum, J. Bacteriol. 171:4410–4416.Google Scholar
  45. Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720–731.PubMedCrossRefGoogle Scholar
  46. Skulachev, V. P., 1988, Membrane Bioenergetics, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  47. Smith, P. F., 1965, Amino acid metabolism by pleuropneumonia-like organisms, J. Bacteriol. 70:552–556.Google Scholar
  48. Smith, P. F., 1969, The role of lipids in membrane transport in Mycoplasma laidlawii, Lipids 4:331–336.PubMedCrossRefGoogle Scholar
  49. Tarshis, M., 1991, Spiroplasma cells utilize carbohydrates via the phosphoenolpyruvate-dependent sugar phosphotransferase system, Can. J. Microbiol. 37:411–419.CrossRefGoogle Scholar
  50. Tarshis, M. A., Bekkouzjin, A. G., Ladygina, V. G., and Panchenko, L. F., 1976a, Properties of the 3-O-methyl-D-glucose transport system in Acholeplasma laidlawii, J. Bacteriol. 125:1–7.PubMedGoogle Scholar
  51. Tarshis, M. A., Bekkouzjin, A. G., and Ladygina, V. G., 1976b, On the possible role of respiratory activity of Acholeplasma laidlawii cells in sugar transport, Arch. Microbiol. 109:295–299.PubMedCrossRefGoogle Scholar
  52. Van Demark, P. J., and Plackett, P., 1972, Evidence for a phosphoenolpyruvate-dependent sugar phosphotransferase in Mycoplasma strain Y, J. Bacteriol. 111:454–458.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Vincent P. Cirillo
    • 1
  1. 1.Department of Biochemistry and Cell BiologyState University of New YorkStony BrookUSA

Personalised recommendations