Skip to main content

High Resolution Gel Electrophoresis Methods for Studying Sequence-Dependence of Radiation Damage and Effects of Radioprotectants in Deoxyoligonucleotides

  • Chapter
  • 93 Accesses

Part of the book series: NATO ASI Series ((NSSA,volume 243A))

Abstract

Ionizing radiation is known to produce both single and double-strand breaks in DNA (von Sonntag et al., 1981; Hutchinson, 1985; Ward, 1988). In aqueous DNA solutions, radiolysis of water produces OH radicals which react with DNA bases and sugar residues; hydrogen atom abstraction from the sugar moieties produces radicals which ultimately give rise to strand scission. In the case of low LET radiation (e.g. γ-irradiation), DNA damage caused by OH- radicals generated in the bulk of the aqueous solution is called the “indirect effect” (see for example, Skov, 1984; Achey and Durea, 1974; van Rijn et al., 1985; Roots et al., 1985; Siddiqi and Bothe, 1987; Schulte-Frohlinde, 1989). In the case of high LET radiation, e.g. charged heavy particles, a direct deposition of energy within the DNA molecules is dominant in producing DNA damage by the “direct effect” (see Holley et al., 1990, for example). The formation of DNA strand breaks, in particular double-strand breaks, are rather strongly correlated with ionizing radiation-induced cell killing (Coquerelle, 1978; Elkind, 1985). Other harmful effects of ionizing radiation (Beebe, 1982), including mutations (Waters et al., 1991; Jaberaboansari et al., 1991; Raha and Hutchinson, 1991; Geacintov and Swenberg, 1992) have been well documented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achey, P. and Duryea, H., 1974. Production of DNA strand breaks by hydroxyl radicals. Int. J. Radiat. Biol. 25: 595–601.

    Article  CAS  Google Scholar 

  • Beebe, G.W., 1982. Ionizing radiation and health. Am. Scientist 70: 35–44.

    PubMed  CAS  Google Scholar 

  • Bird, R.P., 1980. Cysteamine as a protective agent with high LET radiations. Radiat. Res. 82: 290–296.

    Article  PubMed  CAS  Google Scholar 

  • Coquerelle, T, Hagen, U., Köhnlein, W. and Crump, W., 1978. Radiation effects on the biological function of DNA, in “Effects of Ionizing Radiation on DNA”, Bertinchamps, A.J., Hütterman, J., Kohnlein, W. and Téoule, R., Eds., Springer-Verlag, Berlin, New York, pp. 261–302.

    Chapter  Google Scholar 

  • Elkind, M.M., 1985. DNA damage and cell killing, Cancer 56: 2351–2363.

    Article  PubMed  CAS  Google Scholar 

  • Geacintov, N.E. and Swenberg, C.E., 1992. Chemical, molecular biology, and genetic techniques for correlating DNA base damage induced by ionizing radiation with biological end-points, in: “Physical and chemical Mechanisms in Molecular Radiation Biology”, Varma, M.N. and Glass, W.A., Eds., Springer Science+Business Media New York, pp. 452–474.

    Google Scholar 

  • Held, K.D., Harrop, H.A. and Michael, B.D., 1984. Effects of oxygen and sulphydril-containing compounds on irradiated transforming DNA. II. Glutathione, cysteine and cysteamine. Int. J. Radiat. Biol. 45: 615–626.

    Article  CAS  Google Scholar 

  • Henner, W.D., Grunberg, S.M. and Haseltine, W.A., 1982. Sites and structure of y radiation-induced DNA strand breaks. J. Biol. Chem. 257: 11750–11754.

    PubMed  CAS  Google Scholar 

  • Henner, W.D., Rodriguez, L.O., Hecht, S.M. and Haseltine, W.A., 1983. γ Ray induced deoxyribonucleic acid strand breaks. J. Biol. Chem. 258: 711–713.

    Google Scholar 

  • Holley, W.R., Chatterjee, A. and Magee, J.L., 1990. Production of DNA strand breaks by direct effects of heavy charged particles. Radiat. Res. 121: 161–168.

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, F., 1985. Chemical changes induced in DNA by ionizing radiation. Progr. Nucleic Acid Res. Mol. Biol. 32: 115–154.

    Article  CAS  Google Scholar 

  • Jaberaboansari, A., Dunn, W.C., Preston, R.J., Mitra, S. and Waters, L.C., 1991. Mutations induced by ionizing radiation in plasmid replicated in human cells. II. Sequence analysis of a-particle-induced mutations. Radiat. Res. 127: 202–210.

    Article  PubMed  CAS  Google Scholar 

  • Liphard, M., Bothe, E. and Schulte-Frohlinde, D., 1990. The influence of glutathione on single-strand breakage in single-stranded DNA irradiated in aqueous solution in the absence and presence of oxygen. Int. J. Radiat. Biol. 58: 589–602.

    Article  PubMed  CAS  Google Scholar 

  • Maxam, A.M. and Gilbert, W., 1980. Sequencing end-labeled DNA with base-specific chemical cleavage. Methods. Enzymol. 65: 499–560.

    Article  PubMed  CAS  Google Scholar 

  • Raha, M. and Hutchinson, F., 1991. Deletions induced by gamma rays in the genome of Escherichia coli. J. Mol. Biol. 220: 193–198.

    Article  PubMed  CAS  Google Scholar 

  • Roots, R. and Okada, S., 1972. Protection of DNA molecules of cultured mammalian cells from radiation-induced single-strand scissions by various alcohols and SH compounds. Int. J. Radiat. Biol. 21: 329–342.

    Article  CAS  Google Scholar 

  • Roots, R. and Okada, S., 1975. Estimation of lifetimes and diffusion distances of radicals involved in X-ray-induced DNA strand breaks or killing of mammalian cells. Radiat. Res. 64: 306–320.

    Article  PubMed  CAS  Google Scholar 

  • Roots, R., Chatterjee, A., Chang, P., Lommel, L. and Blakely, E.A., 1985. Characterization of hydroxyl radical-induced damage after sparsely and densely ionizing radiation, Int. J. Radiat. Biol. 47: 157–166.

    Article  CAS  Google Scholar 

  • Schulte-Frohlinde, D., 1989. Studies of radiation effects on DNA in aqueous solution. The L.H. Gray Lecture. ICRU News, December issue, 4-15.

    Google Scholar 

  • Siddiqi, M.A. and Bothe, E., 1987. Single-and double-strand break formation in DNA irradiated in aqueous solution: dependence on dose and OH radical scavenger concentration. Radiat. Res. 112: 449–463.

    Article  PubMed  CAS  Google Scholar 

  • Skov, K.A., 1984. The contribution of hydroxyl radicals to radiosensitization: a study of DNA damage. Radiat. Res. 99: 502–510.

    Article  PubMed  CAS  Google Scholar 

  • Smoluk, G.D., Fahey, R.C. and Ward, J.F., 1988. Interaction of glutathione and other low-molecular weight thiols with DNA: evidence for counterion condensation and coion depletion near DNA. Radiat. Res. 114: 3–10.

    Article  PubMed  CAS  Google Scholar 

  • Spotheim-Morizot, M., Charlier, M. and Sabattier, R., 1990. DNA radiolysis by fast neutrons. Int. J. Radiat. Biol. 57: 301–313.

    Article  Google Scholar 

  • Spotheim-Morizot, M., Franchet, J., Sabattier, R. and Charlier, M., 1991. DNA radiolysis by fast neutrons. II. Oxygen, thiols and ionic strength effects, Int. J. Radiat. Biol. 59: 131–1324.

    Google Scholar 

  • Swenberg, C.E., 1988. DNA and radioprotection, in: “Terrestrial Space Radiation and its Biological Effects”, NATO ASI Series A: Life Sciences Vol. 154, McCormack, P.D., Swenberg, C.E. and Bücker, eds., Springer Science+Business Media New York, pp. 675–695.

    Chapter  Google Scholar 

  • Swenberg, C.E., Speicher, J.M. and Miller, J.H., 1992. Does the topology of closed supercoiled DNA effect its radiation sensitivity? These Proceedings.

    Google Scholar 

  • Tullius, T.D., 1987. Chemical “snapshots” of DNA: using the hydroxyl radical to study the structure of DNA and DNA-protein complexes. Trends Biochem. Sci. 12: 297–301.

    Article  CAS  Google Scholar 

  • van der Schans, G.P. and Blok, J., 1970. The influence of oxygen and sulphhydryl compounds on the production of breaks in bacteriophage DNA by gamma-rays. Int. J. Radiat. Biol. 17: 25–38.

    Article  Google Scholar 

  • van Rijn, K., Mayer, T., Blok, J., Verberne, J.B. and Loman, H., 1985. Reaction rate of OH radicals with φX174 DNA: influence of salt and scavenger. Int. J. Radiat. Biol. 47: 309–317.

    Article  Google Scholar 

  • von Sonntag, C., Hagen, U., Schön-Bopp and Schulte-Frohlinde, D., 1981. Radiation-induced strand breaks in DNA: chemical and enzymatic analysis of end groups and mechanistic aspects. Adv. Radiat. Biol. 9: 109–142.

    Google Scholar 

  • Ward, J.F. and Kuo, I., 1978. Radiation damage to DNA in aqueous solution: a comparison of the response of the single-stranded form with that of the double-stranded form. Radiat. Res. 75: 278–285.

    Article  PubMed  CAS  Google Scholar 

  • Ward, J.F., 1983. Chemical aspects of DNA radioprotection, in: “Radioprotectors and Anticarcinogens”, Nygaard, O.F. and Simic, M.G., eds., Academic Press, New York, pp. 73–85.

    Google Scholar 

  • Ward, J.F., 1988. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and repairability. Progr. Nucleic Acid Res. Mol. Biol. 35: 95–125.

    Article  CAS  Google Scholar 

  • Waters, L.C., Skipi, M.O., Julian Preston, R., Mitra, S. and Jaberaboansari, 1991. Mutations induced by ionizing radiation in plasmid replicated in human cells. I. Similar, nonrandom distribution of mutations in unirradiated and X-irradiated DNA. Radiat. Res. 127: 190–201.

    Article  PubMed  CAS  Google Scholar 

  • Watt, D.E., 1988. Absolute biological effectiveness of neutrons and photons. Radiation Protection Dosimetry 23: 63–67.

    Google Scholar 

  • Zheng, S., Newton, G.L., Gonick, G., Fahey, R.C. and Ward, J.F., 1988. Radioprotection of DNA by thiols: relationship between the net charge on a thiol and its ability to protect DNA. Radiat. Res. 114: 11–27.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mao, B., Swenberg, C.E., Vaishnav, Y., Geacintov, N.E. (1993). High Resolution Gel Electrophoresis Methods for Studying Sequence-Dependence of Radiation Damage and Effects of Radioprotectants in Deoxyoligonucleotides. In: Swenberg, C.E., Horneck, G., Stassinopoulos, E.G. (eds) Biological Effects and Physics of Solar and Galactic Cosmic Radiation. NATO ASI Series, vol 243A. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2918-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2918-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6266-1

  • Online ISBN: 978-1-4615-2918-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics