The Intermediate Compartment between Endoplasmic Reticulum and Golgi Complex in Mammalian Cells

  • Stefano Bonatti
  • Maria Rosaria Torrisi
Part of the Subcellular Biochemistry book series (SCBI, volume 21)

Abstract

Several lines of evidence strongly support the view that the traffic between ER and Golgi complex involves one (or more) previously unidentified membranous structure. This fascinating new finding is based on data obtained in several different experimental systems with different methodology. Unavoidably, many terms have been suggested for this structure: pre-Golgi vacuoles (Saraste and Kuismanen, 1984), budding compartment (Tooze et al., 1988), intermediate compartment (Schweizer et al., 1990), intermediate elements (Saraste and Svensson, 1991), salvage compartment (Munro and Pelham, 1987), cis-Golgi network (Mellman and Simons, 1992). Throughout this review, we will use only the term “intermediate compartment.” Many different findings and opinions on the structure and function of the intermediate compartment have been reported and will be considered throughout this review: thus, we will present our own view from the beginning, to give the readers a guideline in this intricate pathway.

Keywords

Influenza Oligomerization Compaction Disulfide Gallione 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balch, W. E., 1990, Small GTP-binding proteins in vesicular transport, Trends Biochem. Sci. 15:473–477.PubMedCrossRefGoogle Scholar
  2. Beckers, C. J. M., Keller, D. S., and Balch, W. E., 1987, Semi-intact cells permeable to macromolecules: Use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex, Cell 50:523–534.PubMedCrossRefGoogle Scholar
  3. Beckers, C. J. M., Plutner, H., Davidson, H. W., and Balch, W. E, 1990, Sequential intermediates in the transport of protein between the endoplasmic reticulum and the Golgi, J. Biol. Chem. 265:18298–18310.PubMedGoogle Scholar
  4. Bergmann, J. E., and Fusco, P. J., 1990, The G protein of vesicular stomatitis virus has free access into and egress from the smooth endoplasmic reticulum of UT-1 cells, J. Cell Biol. 110:625–635.PubMedCrossRefGoogle Scholar
  5. Bonatti, S., Migliaccio, G., and Simons, K., 1989, Palmitylation of viral membrane glycoproteins takes place after exit from the endoplasmic reticulum, J. Biol. Chem. 264:12590–12595.PubMedGoogle Scholar
  6. Bonifacino, J. S., and Lippincott-Schwartz, J., 1991, Degradation of proteins within the endoplasmic reticulum, Curr. Opin. Cell Biol. 3:592–600.PubMedCrossRefGoogle Scholar
  7. Buckley, I. K., and Porter, K. R., 1975, Electron microscopy of critical point dried whole cultured cells, J. Microsc. (Oxford) 104:107–120.CrossRefGoogle Scholar
  8. Chavrier, P., Parton, R. G., Hauri, H. P., Simons, K., and Zerial, M. 1990, Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments, Cell 62:317–329.PubMedCrossRefGoogle Scholar
  9. Chin, D. J., Luskey, K. L., Anderson, R. G. W., Faust, J. R., Goldstein, J. L., and Brown, M. S., 1982, Appearance of crystalloid endoplasmic reticulum in compactin-resistant Chinese hamster cells with a 500-fold increase in 3-hydroxy-3-methylglutaryl-coenzyme A reductase, Proc. Natl. Acad. Sci. USA 79:1185–1189.PubMedCrossRefGoogle Scholar
  10. Dabora, S. L., and Sheetz, M. P., 1988, The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cells, Cell 54:27–35.PubMedCrossRefGoogle Scholar
  11. Doms, R. W., Russ, G., and Yewdell, J. W., 1989, Brefeldin A redistributes resident and itinerant Golgi proteins to the endoplasmic reticulum, J. Cell Biol. 109:61–72.PubMedCrossRefGoogle Scholar
  12. Duben, R., Griffiths, G., Frank, R., Argos, P., and Kreis, T. K., 1991, β-COP, a 110 kD protein associated with non-clathrin-coated vesicles and the Golgi complex, shows homology with β-adaptin, Cell 64:649–665.CrossRefGoogle Scholar
  13. Dunphy, W. G., and Rothman, J. E., 1983, Compartmentation of asparagine-linked Oligosaccharide processing in the Golgi apparatus, J. Cell Biol. 97:270–275.PubMedCrossRefGoogle Scholar
  14. Franke, W. W., 1971, Cytoplasmic microtubules linked to endoplasmic reticulum with cross-bridges, Exp. Cell Res. 66:486–489.PubMedCrossRefGoogle Scholar
  15. Gallione, C. J., and Rose, J. K., 1985, A single amino acid substitution in a hydrophobic domain causes temperature-sensitive cell-surface transport of a mutant viral glycoprotein, J. Virol. 54:374–382.PubMedGoogle Scholar
  16. Goldberg, D. E., and Kornfeld, S., 1983, Evidence for extensive subcellular organization of asparagine-linked Oligosaccharide processing and lysosomal enzymes phosphorylation, J. Biol. Chem. 258:3159–3165.PubMedGoogle Scholar
  17. Groesch, M., Ruohola, H., Bacon, R., Rossi, G., and Ferro-Novick, S., 1990, Isolation of a functional vesicular intermediate that mediates ER to Golgi transport in yeast, J. Cell Biol. 111:45–53.PubMedCrossRefGoogle Scholar
  18. Helenius, A., Marquardt, T., and Braakman, I., 1992, The endoplasmic reticulum as a proteinfolding compartment, Trends Cell Biol. 2:227–231.PubMedCrossRefGoogle Scholar
  19. Hobman, T. C., Woodward, L., and Farquhar, M. G., 1992, The rubella virus El glycoprotein is arrested in a novel post-ER, pre-Golgi compartment, J. Cell Biol. 118:795–812.PubMedCrossRefGoogle Scholar
  20. Hsu, V. W., Yuan, L. C., Nuchtern, J. G., Lippincott-Schwartz, J., Hammerling, G. J., and Klausner, R. D., 1991, A recycling pathway between the endoplasmic reticulum and the Golgi apparatus for retention of unassembled MHC class I molecules, Nature 352:441–444.PubMedCrossRefGoogle Scholar
  21. Hsu, V. W., Shah, N., and Klausner, R. D., 1992, A brefeldin A-like phenotype is induced by the overexpression of a human ERD-2-like protein, ELP-1, Cell 69:625–635.PubMedCrossRefGoogle Scholar
  22. Hurtley, S. M., and Helenius, A., 1989, Protein oligomerization in the endoplasmic reticulum, Annu. Rev. Cell Biol. 5:277–307.PubMedCrossRefGoogle Scholar
  23. Jamieson, J. D., and Palade, G. E., 1967, Intracellular transport of secretory proteins in the pancreatic exocrine cell. I: Role of the peripheral elements of the Golgi complex, J. Cell Biol. 34:577–596.PubMedCrossRefGoogle Scholar
  24. Kartenbeck, J., Stukenbrok, H., and Helenius, H., 1989, Endocytosis of simian virus 40 into the endoplasmic reticulum, J. Cell Biol. 109:2721–2729.PubMedCrossRefGoogle Scholar
  25. Klausner, R. D., Donaldson, J. G., and Lippincott-Schwartz, J., 1992, Brefeldin A: Insights into the control of membrane traffic and organelle structure, J. Cell Biol. 116:1071–1080.PubMedCrossRefGoogle Scholar
  26. Kornfeld, R., and Kornfeld, S., 1985, Assembly of asparagine linked Oligosaccharides, Annu. Rev. Biochem. 54:631–664.PubMedCrossRefGoogle Scholar
  27. Kreis, T. E., and Lodish, H. F., 1986, Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface, Cell 46:929–937.PubMedCrossRefGoogle Scholar
  28. Kuismanen, E., and Saraste, J., 1989, Low temperature-induced transport blocks as tools to manipulate membrane traffic, Methods Cell Biol. 32:257–274.PubMedCrossRefGoogle Scholar
  29. Lee, C., and Chen, L. B., 1988, Dynamic behavior of endoplasmic reticulum in living cells, Cell 54:37–46.PubMedCrossRefGoogle Scholar
  30. Lewis, M. J., and Pelham, H. R. B., 1992, Ligand induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum, Cell 68:353–364.PubMedCrossRefGoogle Scholar
  31. Lindsey, J. D., and Ellisman, M. H., 1985a, The neuronal endomembrane system. I: Direct links between rough endoplasmic reticulum and the cis element of the Golgi apparathus, J. Neurosci. 5:3111–3123.PubMedGoogle Scholar
  32. Lindsey, J. D., and Ellisman, M. H., 1985b, The neuronal endomembrane system. II: The multiple forms of the Golgi apparatus cis element, J. Neurosci. 5:3124–3134.PubMedGoogle Scholar
  33. Lippincott-Schwartz, J., Yuan, L. C., Bonifacino, J. S., and Klausner, R. D., 1989, Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: Evidence for a membrane cycling from Golgi to ER, Cell 56:801–813.PubMedCrossRefGoogle Scholar
  34. Lippincott-Schwartz, J., Donaldson, J. G., Schweizer, A., Berger, E. G., Hauri, H. P., Yuan, L. C., and Klausner, R. D., 1990, Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway, Cell 60:821–836.PubMedCrossRefGoogle Scholar
  35. Lodish, H. F., Kong, N., Hirani, S., and Rasmussen, J., 1987, A vesicular intermediate in the transport of hepatoma secretory proteins from the rough endoplasmic reticulum to the Golgi complex, J. Cell Biol. 104:221–230.PubMedCrossRefGoogle Scholar
  36. Lotti, L. V., Torrisi, M. R., Pascale, M. C., and Bonatti, S., 1992, Immunocytochemical analysis of the transfer of vesicular stomatitis virus G glycoprotein from the intermediate compartment to the Golgi complex, J. Cell Biol. 118:43–50.PubMedCrossRefGoogle Scholar
  37. Louvard, D., Reggio, H., and Warren, G., 1982, Antibodies to the Golgi complex and the rough endoplasmic reticulum, J. Cell Biol. 92:92–106.PubMedCrossRefGoogle Scholar
  38. Mellman, I., and Simons, K., 1992, The Golgi complex: In vitro veritas? Cell 68:829–840.PubMedCrossRefGoogle Scholar
  39. Merisko, E. M., Fletcher, M., and Palade, G. E., 1986, The reorganization of the Golgi complex in anoxic pancreatic acinar cells, Pancreas 1:95–109.PubMedCrossRefGoogle Scholar
  40. Munro, S., and Pelham, H. R. B., 1987, A C-terminal signal prevents secretion of luminal ER proteins, Cell 48:899–907.PubMedCrossRefGoogle Scholar
  41. Nasciutti, L. E., Picart, R., Rosenbaum, E., Tixier-Vidal, A., and Tougard, C., 1992, Effect of reduced temperatures and brefeldin A on prolactin secretion and on subcellular distribution of the secretory product and membrane antigens in GH3 pituitary cells, Biol. Cell 72:25–35.CrossRefGoogle Scholar
  42. Nguyen Van, P., Peter, F., and Soling, H. D., 1989, Four intracisternal calcium-binding glycoproteins from rat liver microsomes with high affinity for calcium. No indication for calsequestrinlike proteins in inositol 1,4,5-trisphosphate-sensitive calcium sequestering rat liver vesicles, J. Biol. Chem. 264:17494–17501.Google Scholar
  43. Orci, L., Ravazzola, M., Meda, P., Holcomb, C., Moore, H. P., Hicke, L., and Schekman, R. S., 1991, Mammalian sec23p homologue is restricted to the endoplasmic reticulum transitional cytoplasm, Proc. Natl. Acad. Sci. USA 88:8611–8615.PubMedCrossRefGoogle Scholar
  44. Orrenius, S., Ericsson, J. L. E., and Ernster, L., 1965, Phenobarbital-induced synthesis of the microsomal drug-metabolizing enzyme system and its relationship to the proliferation of endoplasmic membranes, J. Cell Biol. 25:627–639.PubMedCrossRefGoogle Scholar
  45. Ottosen, P. D., Courtoy, P. J., and Farquhar, M. G., 1980, Pathways followed by membrane recovered from the surface of plasma cells and myeloma cells, J. Exp. Med. 152:1–19.PubMedCrossRefGoogle Scholar
  46. Pacifici, M., and Iozzo, R., 1988, Remodeling of the rough endoplasmic reticulum during stimulation of procollagen secretion by ascorbic acid in cultured chondrocytes, J. Biol. Chem. 263:2483–2492.PubMedGoogle Scholar
  47. Palade, G. E., 1975, Intracellular aspects of the process of protein synthesis, Science 189:347–358.PubMedCrossRefGoogle Scholar
  48. Pascale, M. C., Erra, M. C., Malagolini, N., Serafini-Cessi, F., Leone, A., and Bonatti, S., 1992, Post-translational processing of an O-glycosylated protein, the human CD8 glycoprotein, during the intracellular transport pathway to the plasma membrane, J. Biol. Chem. 267:25196–25201.PubMedGoogle Scholar
  49. Pathak, R. K., Merkle, R. K., Cummings, R. D., Goldstein, J. L., Brown, M. S., and Anderson, R. G. W., 1988, Immunocytochemical localization of mutant low density lipoprotein receptors that fail to reach the Golgi complex, J. Cell Biol. 106:1831–1841.PubMedCrossRefGoogle Scholar
  50. Paulike, M., Nowack, D. D., and Morré, J. D., 1988, Isolation of a vesicular intermediate in the cell-free transfer of membrane from transitional elements of the endoplasmic reticulum to Golgi apparatus cisternae of rat liver, J. Biol. Chem. 263:17738–17748.Google Scholar
  51. Pelham, H. R. B., 1988, Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compartment, EMBO J. 7:913–918.PubMedGoogle Scholar
  52. Pelham, H. R. B., 1989, Control of protein exit from the endoplasmic reticulum, Annu. Rev. Cell Biol. 5:1–23.PubMedCrossRefGoogle Scholar
  53. Plutner, H., Cox, A. D., Pind, S., Khosravi-Far, R., Bourne, J. R., Schwaninger, R., Der, C. J., and Balch, W. E., 1991, Rablb regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments, J. Cell Biol. 115:31–43.PubMedCrossRefGoogle Scholar
  54. Rambourg, A., and Clermont, Y., 1990, Three-dimensional electron microscopy: Structure of the Golgi apparatus, Eur. J. Cell Biol. 51:189–200.PubMedGoogle Scholar
  55. Remmer, H., and Merker, H. J., 1963, Drug induced changes in liver endoplasmic reticulum: Association with drug metabolizing enzymes, Science 142:1657–1658.PubMedCrossRefGoogle Scholar
  56. Rexach, M. F., and Schekman, R. W., 1991, Distinct biochemical requirements for the budding, targeting, and fusion of ER-derived transport vesicles, J. Cell Biol. 114:219–229.PubMedCrossRefGoogle Scholar
  57. Rizzolo, L. I., Finidori, J., Gonzalez, A., Arpin, M., Ivanov, I. E., Adesnik, M., and Sabatini, D. D., 1985, Biosynthesis and intracellular sorting of growth hormone-viral envelope glycoprotein hybrids, J. Cell Biol. 101:1351–1362.PubMedCrossRefGoogle Scholar
  58. Rose, J. K., and Doms, R. W., 1988, Regulation of protein export from the endoplasmic reticulum, Annu. Rev. Cell Biol. 4:257–288.PubMedCrossRefGoogle Scholar
  59. Roth, J., 1991, Localization of glycosylation sites in the Golgi apparatus using immunolabeling and cytochemistry, J. Electron Microsc. Tech. 17:121–131.PubMedCrossRefGoogle Scholar
  60. Rothman, J. E., and Orci, L., 1992, Molecular dissection of the secretory pathway, Nature 355:409–415.PubMedCrossRefGoogle Scholar
  61. Saraste, J., and Kuismanen, E., 1984, Pre-and post-Golgi vacuoles operate in the transport of Semliki Forest virus membrane glycoproteins to the cell surface, Cell 38:535–549.PubMedCrossRefGoogle Scholar
  62. Saraste, J., and Svensson, K., 1991, Distribution of the intermediate elements operating in ER to Golgi transport, J. Cell Sci. 100:415–430.PubMedGoogle Scholar
  63. Saraste, J., Palade, G. E., and Farquhar, M. G., 1986, Temperature sensitive steps in the transport of secretory proteins through the Golgi complex in exocrine pancreatic cells, Proc. Natl. Acad. Sci. USA 83:6425–6429.PubMedCrossRefGoogle Scholar
  64. Saraste, J., Palade, G. E., and Farquhar, M. G., 1987, Antibodies to rat pancreas Golgi subfractions: Identification of a 58-kD cis-Golgi protein, J. Cell Biol. 105:2021–2029.PubMedCrossRefGoogle Scholar
  65. Schweizer, A., Fransen, J. A. M., Bachi, T., Ginsel, L., and Hauri, H. P., 1988, Identification, by a monoclonal antibody, of a 53-kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus, J. Cell Biol. 107:1643–1653.PubMedCrossRefGoogle Scholar
  66. Schweizer, A., Fransen, J. A. M., Matter, K., Kreis, T. K., Ginsel, L., and Hauri, H. P., 1990, Identification of an intermediate compartment involved in protein transport from endoplasmic reticulum to Golgi apparatus, Eur. J. Cell Biol. 53:185–196.PubMedGoogle Scholar
  67. Schweizer, A., Matter, K., Ketcham, C. M., and Hauri, H. P., 1991, The isolated ER-Golgi intermediate compartment exhibits properties that are different from ER and cis-Golgi, J. Cell Biol. 113:45–54.PubMedCrossRefGoogle Scholar
  68. Tartakoff, A. M., 1986, Temperature and energy dependence of secretory protein transport in the exocrine pancreas, EMBO J. 5:1477–1482.PubMedGoogle Scholar
  69. Terasaki, M., Chen, L. B., and Fujikawa, K., 1986, Microtubules and the endoplasmic reticulum are highly interdependent structures, J. Cell. Biol. 103:1557–1568.PubMedCrossRefGoogle Scholar
  70. Tooze, J., and Hollinshead, M., 1991, Tubular endosomal networks in AtT20 and other cells, J. Cell Biol. 115:635–653.PubMedCrossRefGoogle Scholar
  71. Tooze, S. A., Tooze, J., and Warren, G., 1988, Site of addition of N-acetyl-galactosamine to the El glycoprotein of mouse hepatitis virus-A59, J. Cell Biol. 106:1475–1487.PubMedCrossRefGoogle Scholar
  72. Torrisi, M. R., Lotti, L. V., Pavan, A., Migliaccio, G., and Bonatti, S., 1987, Free diffusion to and from the inner nuclear membrane of newly synthesized plasma membrane glycoproteins, J. Cell Biol. 104:733–737.PubMedCrossRefGoogle Scholar
  73. Ulmer, J. B., and Palade, G. E., 1989, Targeting and processing of glycophorins in murine erythroleukemia cells: Use of brefeldin A as perturbant of intracellular traffic, Proc. Natl. Acad. Sci. USA 86:6992–6996.PubMedCrossRefGoogle Scholar
  74. Ulmer, J. B., and Palade, G. E., 1991, Effect of brefeldin A on the Golgi complex, endoplasmic reticulum and viral envelope glycoproteins in murine erythroleukemia cells, Eur. J. Cell Biol. 54:38–54.PubMedGoogle Scholar
  75. Vaux, D., Tooze, J., and Fuller, S., 1990, Identification by anti-idiotype antibodies of an intracellular membrane protein that recognizes a mammalian endoplasmic reticulum retention signal, Nature 345:495–501.PubMedCrossRefGoogle Scholar
  76. Vertel, B. M., Velasco, A., LaFrance, S., Walters, L., and Kaczam-Daniel, K., 1989, Precursors of chondroitin sulfate proteoglycan are segregated within a subcompartment of the chondrocyte endoplasmic reticulum, J. Cell Biol. 109:1827–1836.PubMedCrossRefGoogle Scholar
  77. Walter, R. J., and Tandler, B., 1989, Viruses and annulate lamellae in Friend erythroleukemia cells, J. Submicrosc. Cytol. Pathol. 21:93–101.PubMedGoogle Scholar
  78. Warren, G., 1987, Signals and salvage sequences, Nature 327:17–18.PubMedCrossRefGoogle Scholar
  79. Zuber, C., Roth, J., Misteli, T, Nakano, A., and Moremen, K., 1991, DS28-6, a temperaturesensitive mutant of Chinese hamster ovary cells, expresses key phenotypic changes associated with brefeldin A treatment, Proc. Natl. Acad. Sci. USA 88:9818–9822.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Stefano Bonatti
    • 1
  • Maria Rosaria Torrisi
    • 2
  1. 1.Department of Biochemistry and Medical BiotechnologyUniversity of Naples “Federico II,”NaplesItaly
  2. 2.Department of Experimental MedicineUniversity of Rome “La Sapienza,”RomeItaly

Personalised recommendations