Distribution, Biosynthesis, and Function of Mevalonate Pathway Lipids

  • Johan Ericsson
  • Gustav Dallner
Part of the Subcellular Biochemistry book series (SCBI, volume 21)


The structures and biosynthesis of mevalonate pathway lipids, and in particular of cholesterol, have been intensively investigated throughout most of this century and a large amount of data have accumulated. In spite of this enormous effort, completely new information concerning the membrane organization, compartmentalization, function, and metabolic regulation of these lipids has recently appeared and will be summarized in this review.


Bile Acid Cholesterol Synthesis Cholesterol Biosynthesis Mevalonate Pathway Dolichyl Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Åberg, F., Appelkvist, E.-L., Daliner, G., and Ernster, L., 1992, Distribution and redox state of ubiquinones in rat and human tissues, Arch. Biochem. Biophys. 295:230–234.PubMedGoogle Scholar
  2. Adair, W. L., and Keller, R. K., 1982, Dolichol metabolism in rat liver: Determination of the subcellular distribution of dolichyl phosphate and its site and rate of de novo biosynthesis, J. Biol. Chem. 257:8990–8996.PubMedGoogle Scholar
  3. Alberts, A. W., 1988, Discovery, biochemistry and biology of lovastatin, Am. J. Cardio. 62:10J–15J.Google Scholar
  4. Allen, C. M., Kalin, J. R., Sack, J., and Verizzo, D., 1978, CTP-dependent dolichol phosphorylation by mammalian cell homogenates, Biochemistry 17:5020–5026.PubMedGoogle Scholar
  5. Anderson, M. S., Yarger, J. G., Burcke, C. L., and Poulter, C. D., 1989, Farnesyl diphosphate synthetase: Molecular cloning, sequence, and expression of an essential gene from Saccharomyces cerevisiae, J. Biol. Chem. 264:19176–19184.PubMedGoogle Scholar
  6. Andersson, M., Elmberger, P. G., Edlund, C., Kristensson, K., and Dallner, G., 1990, Rates of cholesterol, dolichol and dolichyl-P biosynthesis in rat brain slices, FEBS Lett. 269:15–18.PubMedGoogle Scholar
  7. Appelkvist, E.-L., 1987, In vitro labeling of peroxisomal cholesterol with radioactive precursors, Biosci. Rep. 7:853–858.PubMedGoogle Scholar
  8. Appelkvist, E.-L., and Kalén, A., 1989, Biosynthesis of dolichol by rat liver peroxisomes, Eur. J. Biochem. 185:503–509.PubMedGoogle Scholar
  9. Appelkvist, E.-L., Reinhart, M., Fischer, R., Billheimer, J., and Dallner, G., 1990, Presence of individual enzymes of cholesterol biosynthesis in rat liver peroxisomes, Arch. Biochem. Biophys. 282:318–325.PubMedGoogle Scholar
  10. Appelkvist, E.-L., Kalén, A., and Dallner, G., 1991, Biosynthesis and regulation of coenzyme Q, in: Biomédical and Clinical Aspects of Coenzyme Q (K. Folkers, G. P. Littarru, and T. Yamagami, eds.), pp. 141–150, Elsevier, Amsterdam.Google Scholar
  11. Ashby, M. N., and Edwards, P. A., 1989, Identification and regulation of a rat liver cDNA encoding farnesyl pyrophosphate synthetase, J. Biol. Chem. 264:635–640.PubMedGoogle Scholar
  12. Ashby, M. N., and Edwards, P. A., 1990, Elucidation of the deficiency in two yeast coenzyme Q mutants: Characterization of the structural gene encoding hexaprenyl pyrophosphate synthetase, J. Biol. Chem. 265:13157–13164.PubMedGoogle Scholar
  13. Ashby, M. N., Kutsunai, S. Y., Ackerman, S., Tzagoloff, A., and Edwards, P. A., 1992, COQ2 is a candidate for the structural gene encoding parahydroxybenzoate:polyprenyltransferase, J. Biol. Chem. 267:4128–4136.PubMedGoogle Scholar
  14. Åstrand, I.-M., Fries, E., Chojnacki, T., and Dallner, G., 1986, Inhibition of dolichyl phosphate biosynthesis by compactin in cultured rat hepatocytes. Eur. J. Biochem. 155:447–452.PubMedGoogle Scholar
  15. Baba, T., Morris, C., and Allen, C. M., 1987, Dehydrodolichyl diphosphate synthetase from rat seminiferous tubules, Arch. Biochem. Biophys. 252:440–450.PubMedGoogle Scholar
  16. Beg, Z. H., Stonik, J. A., and Brewer, H. B., Jr., 1987, Phosphorylation and modulation of the enzymatic activity of native and protease-cleaved purified hepatic 3-hydroxy-3-methylglutarylcoenzyme A reductase by a calcium/calmodulin-dependent protein kinase, J. Biol. Chem. 262:13228–13240.PubMedGoogle Scholar
  17. Beyer, R. E., Nordenbrand, K., and Ernster, L., 1987, The function of coenzyme Q in free radical production and as an antioxidant: A review, Chem. Scr. 27:145–153.Google Scholar
  18. Billheimer, J. T., and Reinhart, M. P., 1990, Intracellular trafficking of sterols, in: Intracellular Transfer of Lipid Molecules (H. J. Hilderson, ed.), pp. 301–331, Plenum Press, New York.Google Scholar
  19. Björkhem, I., 1985, Mechanism of bile acid biosynthesis in mammalian liver, in: Sterols and Bile Acids (H. Danielsson and J. Sjövall, eds.), pp. 231–278, Elsevier, Amsterdam.Google Scholar
  20. Borgers, M., 1980, Mechanism of action of antifungal drugs with special reference to the imidazole derivatives, Rev. Infect. Dis. 2:520–534.PubMedGoogle Scholar
  21. Brown, M. S., Faust, J. R., Goldstein, J. L., Kaneko, I., and Endo, A., 1978, Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive inhibitor of the reductase, J. Biol. Chem. 253:1121–1128.PubMedGoogle Scholar
  22. Burton, W. A., Lucas, J. J., and Waechter, C. J., 1981, Enhanced chick oviduct dolichol kinase activity during estrogen-induced differentiation, J. Biol. Chem. 256:632–635.PubMedGoogle Scholar
  23. Casey, J., and Threlfall, D. R., 1978, Formation of 3-hexaprenyl-4-hydroxybenzoate by matrix-free mitochondrial membrane-rich preparations of yeast, Biochim. Biophys. Acta 530:487–502.PubMedGoogle Scholar
  24. Chin, D. J., Luskey, K. L., Anderson, R. G. W., Faust, J. R., Goldstein, J. L., and Brown, M. S., 1982, Appearance of crystalloid endoplasmic reticulum in compactin-resistant Chinese hamster cells with a 500-fold increase in 3-hydroxy-3-methylglutaryl coenzyme A reductase, Proc. Natl. Acad. Sci. USA 79:1185–1189.PubMedGoogle Scholar
  25. Chin, D. J., Gil, G., Russell, D. W., Liscum, L., Luskey, K. L., Basu, S. K., Okayama, H., Berg, P., Goldstein, J. L., and Brown, M. S., 1984, Nucleotide sequence of 3-hydroxy-3-methylglutaryl coenzyme A reductase, a glycoprotein of endoplasmic reticulum, Nature 308:613–617.PubMedGoogle Scholar
  26. Chojnacki, T., and Dallner, G., 1983, The uptake of dietary polyprenols and their modification to active dolichols by the rat liver, J. Biol. Chem. 258:916–922.PubMedGoogle Scholar
  27. Chojnacki, T, and Dallner, G., 1988, The biological role of dolichol, Biochem. J. 251:1–9.PubMedGoogle Scholar
  28. Chun, K. T., and Simoni, R. D., 1992, The role of the membrane domain in the regulated degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase, J. Biol. Chem. 267:4236–4246.PubMedGoogle Scholar
  29. Clarke, C. F., Tanaka, R. D., Svenson, K., Wamsley, M., Fogelman, A. M., and Edwards, P. A., 1987a, Molecular cloning and sequence of a cholesterol-repressible enzyme related to prenyltransferase in the isoprene biosynthetic pathway, Mol. Cell. Biol. 7:3138–3146.PubMedGoogle Scholar
  30. Clarke, C. F., Edwards, P. A., and Fogelman, A. M., 1987b, Cellular regulation of cholesterol metabolism, in: Plasma Lipoproteins (A. M. Gotto, Jr., ed.), pp. 261–276, Elsevier, Amsterdam.Google Scholar
  31. Clarke, C. F., Williams, W., and Teruya, J., 1991, Ubiquinone biosynthesis in Saccharomyces cerevisiae: Isolation and sequence of COQ3, the 3,4-dihydroxy-5-hexaprenylbenzoate methyltransferase gene, J. Biol. Chem. 266:16636–16644.PubMedGoogle Scholar
  32. Clarke, P. R., and Hardie, D. G., 1990, Regulation of HMG-CoA reductase: Identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver, EMBO J. 9:2439–2446.PubMedGoogle Scholar
  33. Coleman, R., and Rahman, K., 1992, Lipid flow in bile formation, Biochim. Biophys. Acta 1125:113–133.PubMedGoogle Scholar
  34. Crane, F. L., 1986, Physiological coenzyme Q function and pharmacological relations, in: Biomedical and Clinical Aspects of Coenzyme Q (K. Folkers and Y. Yamamura, eds.), pp. 3–14, Elsevier, Amsterdam.Google Scholar
  35. Crick, D. C., Rush, J. S., and Waechter, C. J., 1991, Characterization and localization of a longchain isoprenyltransferase activity in porcine brain: Proposed role in the biosynthesis of dolichyl phosphate, J. Neurochem. 57:1354–1362.PubMedGoogle Scholar
  36. Daniels, I., and Hemming, F. W., 1990, Changes in murine tissue concentrations of dolichol and dolichol derivatives associated with age, Lipids 25:586–593.PubMedGoogle Scholar
  37. de Ropp, J. S., and Troy, F. A., 1985, 2H NMR investigation of the organization and dynamics of polyisoprenols in membranes, J. Biol. Chem. 260:15669–15674.PubMedGoogle Scholar
  38. Dietschy, J. M., and Spady, D. K., 1984, Measurement of rates of cholesterol synthesis using tritiated water, J. Lipid Res. 25:1469–1476.PubMedGoogle Scholar
  39. Edlund, C., Ericsson, J., and Dallner, G., 1987, Changes in hepatic dolichol and dolichyl monophosphate caused by treatment of rats with inducers of the endoplasmic reticulum and peroxisomes and during ontogeny, Chem. Biol. Interact. 62: 191–208.PubMedGoogle Scholar
  40. Edlund, C., Brunk, U., Chojnacki, T., and Dallner, G., 1988, The half-lives of dolichol and dolichyl phosphate in rat liver, Biosci. Rep. 8:139–146.PubMedGoogle Scholar
  41. Edmond, J., and Popjak, G., 1974, Transfer of carbon atoms from mevalonate to n-fatty acids, J. Biol. Chem. 249:66–71.PubMedGoogle Scholar
  42. Edwards, P. A., 1991, Regulation of sterol biosynthesis and isoprenylation of proteins, in: Biochemistry of Lipids, Lipoproteins and Membranes (D. E. Vance and J. Vance, eds.), pp. 383–401, Elsevier, Amsterdam.Google Scholar
  43. Edwards, P. A., Lan, S. F., and Fogelman, A. M., 1983, Alterations in the rates of synthesis and degradation of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase produced by cholestyramine and mevinoline, J. Biol. Chem. 258:10219–10222.PubMedGoogle Scholar
  44. Eggens, I., Chojnacki, T., Kenne, L., and Dallner, G., 1983, Separation, quantitation and distribution of dolichol and dolichyl phosphate in rat and human tissues, Biochim. Biophys. Acta 751:355–368.PubMedGoogle Scholar
  45. Eggens, I., Ericsson, J., and Tollbom, Ö., 1988, Cytidine 5′-triphosphate-dependent dolichol kinase and dolichol Phosphatase activities and levels of dolichyl phosphate in microsomal fractions from highly differentiated human hepatomas, Cancer Res. 48:3418–3424.PubMedGoogle Scholar
  46. Eggens, I., Elmberger, P. G., and Löw, P., 1989, Polyisoprenoid, cholesterol and ubiquinone levels in human hepatocellular carcinomas, Br. J. Exp. Pathol. 70:83–92.PubMedGoogle Scholar
  47. Ekström, T. J., Chojnacki, T., and Dallner, G., 1984, Metabolic labeling of dolichol and dolichyl phosphate in isolated hepatocytes, J. Biol. Chem. 259:10460–10468.PubMedGoogle Scholar
  48. Ekström, T. J., Chojnacki, T., and Dallner, G., 1987a, The α-saturation and terminal events in dolichol biosynthesis, J. Biol. Chem. 262:4090–4097.PubMedGoogle Scholar
  49. Ekström, T. J., Ericsson, J., and Chojnacki, T., 1987b, Localization and terminal reactions of dolichol biosynthesis, Chem. Scr. 27:39–47.Google Scholar
  50. Elmberger, P. G., Engfeldt, P., and Dallner, G., 1988, Presence of dolichol and its derivatives in human blood, J. Lipid Res. 29:1651–1662.PubMedGoogle Scholar
  51. Elmberger, P. G., Kalén, A., Brunk, U. T., and Dallner, G., 1989, Discharge of newly-synthesized dolichol and ubiquinone with lipoproteins to rat liver perfusate and to the bile, Lipids 24:919–930.PubMedGoogle Scholar
  52. Ericsson, J., Thelin, A., Chojnacki, T., and Dallner, G., 1991a, Characterization and distribution of cis-prenyl transferase participating in liver microsomal polyisoprenoid biosynthesis, Eur. J. Biochem. 202:789–796.PubMedGoogle Scholar
  53. Ericsson, J., Scallen, T. J., Chojnacki, T., and Dallner, G., 1991b, Involvement of sterol carrier protein-2 in dolichol biosynthesis, J. Biol. Chem. 266:10602–10607.PubMedGoogle Scholar
  54. Ericsson, J., Thelin, A., Chojnacki, T., and Dallner, G., 1992a, Substrate specificity of cis-prenyltransferase in rat liver microsomes, J. Biol. Chem. 267:19730–19735.PubMedGoogle Scholar
  55. Ericsson, J., Appelkvist, E.-L., Thelin, A., Chojnacki, T., and Dallner, G., 1992b, Isoprenoid biosynthesis in rat liver peroxisomes: Characterization of cis-prenyltransferase and squalene synthetase, J. Biol. Chem. 267:18708–18714.PubMedGoogle Scholar
  56. Ernster, L., 1977, Facts and ideas about the functions of coenzyme Q in mitochondria, in: Biomedical and Clinical Aspects of Coenzyme A (K. Folkers and Y. Yamamura, eds.), pp. 15–21, Elsevier, Amsterdam.Google Scholar
  57. Farnsworth, C. C., Gelb, M. H., and Glomset, J. A., 1990, Identification of geranylgeranylmodified proteins in HeLa cells, Science 247:320–322.PubMedGoogle Scholar
  58. Faust, J. R., Goldstein, J. L., and Brown, M. S., 1979, Synthesis of ubiquinone and cholesterol in human fibroblasts: Regulation of a branched pathway, Arch. Biochem. Biophys. 192:86–99.PubMedGoogle Scholar
  59. Faust, J. R., Brown, M. S., and Goldstein, J. L., 1980, Synthesis of Δ2-isopentenyl tRNA from mevalonate in cultured human fibroblasts, J. Biol. Chem. 255:6546–6548.PubMedGoogle Scholar
  60. Ferguson, J. B., and Bloch, K., 1977, Purification and properties of a soluble protein activator of rat liver squalene epoxidase, J. Biol. Chem. 252:5381–5385.PubMedGoogle Scholar
  61. Fisher, K. A., 1976, Analysis of membrane halves: Cholesterol, Proc. Natl. Acad. Sci. USA 73:173–177.PubMedGoogle Scholar
  62. Folkers, K., 1990, Progress in biochemical approaches to clinical therapy with coenzyme Q10, in: Highlights in Ubiquinone Research (G. Lenaz, O. Barnabei, A. Rabbi and M. Battino, eds.), pp. 309–322, Taylor & Francis, London.Google Scholar
  63. Frei, B., Kim, M. C., and Ames, B. N., 1990, Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations, Proc. Natl. Acad. Sci. USA 87:4879–4883.PubMedGoogle Scholar
  64. Fujisaki, S., Hara, H., Nishimura, Y., Horiuchi, K., and Nishino, T., 1990, Cloning and nucleotide sequence of the ispA gene responsible for farnesyl diphosphate synthase activity in Escherichia coli, J. Biochem. 108:995–1000.PubMedGoogle Scholar
  65. Gavey, K. L., Noland, B. J., and Scallen, T. J., 1981, The participation of sterol carrier protein 2 in the conversion of cholesterol to cholesterol ester by rat liver microsomes, J. Biol. Chem. 256:2993–2999.PubMedGoogle Scholar
  66. Gaylor, J. A. L., 1981, Formation of sterols in animals, in: Biosynthesis of Isoprenoid Compounds (S. A. L. Spurgeon and J. O. W. Porter, eds.), Vol. 1, pp. 481–544, Wiley, New York.Google Scholar
  67. Gibbons, G. F., Mitropoulos, K. A., and Myant, N. B., 1982, Biochemistry of Cholesterol, Elsevier, Amsterdam.Google Scholar
  68. Goldstein, J. L., and Brown, M. S., 1990, Regulation of the mevalonate pathway, Nature 343:425–430.PubMedGoogle Scholar
  69. Hancock, J. F., Magee, A. I., Childs, J. E., and Marshall, C. J., 1989, All ras proteins are polyisoprenylated but only some are palmitoylated, Cell 57:1167–1177.PubMedGoogle Scholar
  70. Hemming, F. W., 1981, Biosynthesis of dolichol and related compounds, in: Biosynthesis of Isoprenoid Compounds (S. A. L. Spurgeon and J. O. W. Porter, eds.), Vol. 2, pp. 305–354, Wiley, New York.Google Scholar
  71. Hirschberg, C.B., and Snider, M. D., 1987, Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus, Annu. Rev. Biochem. 56:63–87.PubMedGoogle Scholar
  72. Huneeus, V. Q., Wiley, M. H., and Siperstein, M. D., 1980, Isopentenyladenine as a mediator of mevalonate-regulated DNA replication, Proc. Natl. Acad. Sci. USA 77:5842–5846.PubMedGoogle Scholar
  73. James, M. J., and Kandutsch, A. A., 1980, Regulation of hepatic dolichol synthesis by β-hydroxy-β-methylglutaryl coenzyme A reductase, J. Biol. Chem. 255:8618–8622.PubMedGoogle Scholar
  74. Johnston, J. M., 1978, Esterification reactions in the intestinal mucosa and lipid adsorption, in: Disturbance in Lipid and Lipoprotein Metabolism (J. M. Dietshy, A. M. Gotto, Jr. and J. A. Ontko, eds.), pp. 57–68, American Physiological Society, Bethesda.Google Scholar
  75. Kalén, A., Norling, B., Appelkvist, E.-L., and Daliner, G., 1987, Ubiquinone biosynthesis by the microsomal fraction from rat liver, Biochim. Biophys. Acta 926:70–78.PubMedGoogle Scholar
  76. Kalén, A., Appelkvist, E.-L., and Daliner, G., 1989, Age-related changes in the lipid composition of rat and human tissues, Lipids 24:579–584.PubMedGoogle Scholar
  77. Kalén, A., Appelkvist, E.-L., Chojnacki, T., and Daliner, G., 1990a, Nonaprenyl-4-hydroxybenzoate transferase, an enzyme involved in ubiquinone biosynthesis, in the endoplasmic reticulum-Golgi system of rat liver, J. Biol. Chem. 265:1158–1164.PubMedGoogle Scholar
  78. Kalén, A., Appelkvist, E.-L., and Dallner, G., 1990b, The effects of inducers of the endoplasmic reticulum, peroxisomes and mitochondria on the amounts and synthesis of ubiquinone in rat liver subcellular membranes, Chem. Biol. Interact. 73:221–234.PubMedGoogle Scholar
  79. Kase, B. F., and Björkhem, I., 1989, Peroxisomal bile acid-CoA:amino acid N-acyltransferase in rat liver, J. Biol. Chem. 264:9220–9223.PubMedGoogle Scholar
  80. Keller, G. A., Barton, M. C., Shapiro, D. J., and Singer, S. J., 1985, 3-Hydroxy-methylglutaryl-coenzyme A reductase is present in peroxisomes in normal rat liver cells, Proc. Natl. Acad. Sci. USA 82:770–774.PubMedGoogle Scholar
  81. Keller, R. K., and Nellis, S. W., 1986, Quantitation of dolichyl phosphate and dolichol in major organs of the rat as a function of age, Lipids 21:353–355.PubMedGoogle Scholar
  82. Keller, R. K., Jehle, E., and Adair, W. L., 1982, The origin of dolichol in the liver of the rat: Determination of the dietary contribution, J. Biol. Chem. 257:8985–8989.PubMedGoogle Scholar
  83. Khan, B., Wilcox, H. G., and Heimberg, M., 1989, Cholesterol is required for secretion of verylow-density lipoprotein by rat liver, Biochem. J. 258:807–816.PubMedGoogle Scholar
  84. Kornfeld, R., and Kornfeld, S., 1985, Assembly of asparagine-linked Oligosaccharides, Annu. Rev. Biochem. 54:631–664.PubMedGoogle Scholar
  85. Lenaz, G. (ed.) 1985, Biochemistry, Bioenergetics and Clinical Applications of Ubiquinone, Wiley, New York.Google Scholar
  86. Li, A. C., Tanaka, R. D., Callaway, K., Fogelman, A. M., and Edwards, P. A., 1988, Localization of 3-hydroxy-3-methylglutaryl CoA reductase and 3-hydroxy-3-methylglutaryl CoA synthase in the rat liver and intestine is affected by cholestyramine and mevinolin, J. Lipid Res. 29:781–796.PubMedGoogle Scholar
  87. Liscum, L., Finer-Moore, J., Stroud, R. M., Luskey, K. L., Brown, M. S., and Goldstein, J. L., 1985, Domain structure of 3-hydroxy-3-methylglutaryl coenzyme A reductase, a glycoprotein of the endoplasmic reticulum, J. Biol. Chem. 260:522–530.PubMedGoogle Scholar
  88. Low, M. G., 1989, The glycosyl-phosphatidylinositol anchor of membrane proteins, Biochim. Biophys. Acta 988:427–454.PubMedGoogle Scholar
  89. Löw, P., Andersson, M., Edlund, C., and Daliner, G., 1992, Effects of mevinolin treatment on tissue dolichol and ubiquinone levels in the rat, Biochim. Biophys. Acta 1165:102–109PubMedGoogle Scholar
  90. Maltese, W. A., 1990, Posttranslational modification of proteins by isoprenoids in mammalian cells, FASEB J. 4:3319–3328.PubMedGoogle Scholar
  91. Menon, A. K., Mayor, S., and Schwarz, R. T., 1990, Biosynthesis of glycosylphosphatidylinositol lipids in Trypanosoma brucei: Involvement of mannosylphosphoryldolichol as the mannose donor, EMBO J. 9:4249–4258.PubMedGoogle Scholar
  92. Mitropoulos, K. A., and Venkatesan, S., 1985, Membrane-mediated control of reductase activity, in: Regulation of HMG-CoA Reductase (B. Preiss, ed.), pp. 1–48, Academic Press, New York.Google Scholar
  93. Myant, N. B., 1981, The Biology of Cholesterol and Related Steroids, Heinemann, London.Google Scholar
  94. Myant, N. B., 1990, Cholesterol Metabolism, LDL and the LDL Receptor, Academic Press, New York.Google Scholar
  95. Nakanishi, M., Goldstein, J. L., and Brown, M. S., 1988, Multivalent control of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Mevalonate-derived product inhibits translation of mRNA and accelerates degradation of enzyme, J. Biol. Chem. 263:8929–8937.PubMedGoogle Scholar
  96. Olson, R. E., and Rudney, H., 1983, Biosynthesis of ubiquinone, Vitam. Horm. (N.Y.) 40:1–42.Google Scholar
  97. Olsson, J., Eriksson, L. C., and Dallner, G., 1991, Lipid compositions of intracellular membranes isolated from liver nodules in Wistar rats, Cancer Res. 51:3774–3780.PubMedGoogle Scholar
  98. Osborne, T. F., Gil, G., Brown, M. S., Kowal, R. C., and Goldstein, J. L., 1987, Identification of promoter elements required for in vitro transcription of hamster 3-hydroxy-3-methylglutaryl coenzyme A reductase gene, Proc. Natl. Acad. Sci. USA 84:3614–3618.PubMedGoogle Scholar
  99. Osborne, T. F., Gil, G., Goldstein, J. L., and Brown, M. S., 1988, Operator constitutive mutation of 3-hydroxy-3-methylglutaryl coenzyme A reductase promoter abolishes protein binding to sterol regulatory element, J. Biol. Chem. 263:3380–3387.PubMedGoogle Scholar
  100. Panini, S. R., Sexton, R. C., and Rudney, H., 1984, Regulation of HMG-CoA reductase by oxysterol by-products of cholesterol biosynthesis. Possible mediators of low density lipoprotein action, J. Biol. Chem. 259:7767–7771.PubMedGoogle Scholar
  101. Panini, S. R., Rogers, D. H., and Rudney, H., 1985, Regulation of HMG-CoA reductase and the biosynthesis of nonsteroid prenyl derivatives, in: Regulation of HMG-CoA Reductase (B. Preiss, ed), pp. 149–181, Academic Press, New York.Google Scholar
  102. Panini, S. R., Schnitzer-Polokoff, R., Spencer, T. A., and Sinensky, M., 1989, Sterol-independent regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by mevalonate in Chinese hamster ovary cells: Magnitude and specificity, J. Biol. Chem. 264:11044–11052.PubMedGoogle Scholar
  103. Peffley, D., and Sinensky, M., 1985, Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase synthesis by a non-sterol mevalonate-derived product in Mev-1 cells: Apparent translational control, J. Biol. Chem. 260:9949–9952.PubMedGoogle Scholar
  104. Pentchev, P. G., Comly, M. E., Kruth, H. S., Tokoro, T., Butler, J., Sokol, J., Filling-Katz, M., Quirk, J. M., Marshall, D. C., Patel, S., Vanier, M. T., and Brady, R. O., 1987, Group C Niemann—Pick disease: Faulty regulation of low-density lipoprotein uptake and cholesterol storage in cultured fibroblasts, FASEB J. 1:40–45.PubMedGoogle Scholar
  105. Popjak, G., Clarke, C.F., Hadley, C., and Meenan, A., 1985, Role of mevalonate in regulation of cholesterol synthesis and 3-hydroxy-3-methylglutaryl coenzyme A reductase in cultured cells and their cytoplasts, J. Lipid Res. 26:831–841.PubMedGoogle Scholar
  106. Porter, J. W., and Spurgeon, S. L., (eds.), 1981, Biosynthesis of Isoprenoid Compounds, Vols. 1 and 2, Wiley, New York.Google Scholar
  107. Potter, J. E., and Kandutsch, A. A., 1982, Increased synthesis and concentration of dolichyl phosphate in mouse spleens during phenylhydrazine-induced erythropoiesis, Biochem. Biophys. Res. Commun. 106:691–696.PubMedGoogle Scholar
  108. Pullarkat, R., and Reha, H., 1982, Accumulation of dolichols in brains of elderly, J. Biol. Chem. 257:5991–5993.PubMedGoogle Scholar
  109. Quinn, P. J., and Katsikas, H., 1985, Thermal characteristics of coenzyme Q and its interaction with model membrane systems, in: Biochemistry, Bioenergetics and Clinical Applications of Ubiquinone (G. Lenaz, ed.), pp. 107–130, Wiley, New York.Google Scholar
  110. Ramasarma, T., 1985, Metabolism of coenzyme Q, in: Coenzyme Q: Biochemistry, Bioenergetics and Clinical Applications of Ubiquinone (G. Lenaz, ed.), pp. 131–142, Wiley, New York.Google Scholar
  111. Reiss, Y., Seabra, M. C., Armstrong, S. A., Slaughter, C. A., Goldstein, J. L., and Brown, M. S., 1991, Nonidentical subunits of p21 H-ras farnesyltransferase, J. Biol. Chem. 266:10672–10677.PubMedGoogle Scholar
  112. Rilling, H. C., and Chayet, L. T., 1985, Biosynthesis of cholesterol, in: Sterols and Bile Acids (H. Danielsson and J. Sjövall, eds.), pp. 1–39, Elsevier, Amsterdam.Google Scholar
  113. Rilling, H. C., Bruenger, E., Epstein, W. W., and Crain, P. F., 1990, Prenylated proteins: The structure of the isoprenoid group, Science 247:318–320.PubMedGoogle Scholar
  114. Rip, J. W., Rupar, A. C., Ravi, K., and Carroll, K., 1985, Distribution, metabolism and function of dolichol and polyprenols, Prog. Lipid Res. 24:269–309.PubMedGoogle Scholar
  115. Rosenwald, A. G., and Krag, S. S., 1990, Lec9 CHO glycosylation mutants are defective in the biosynthesis of dolichol, J. Lipid Res. 31:523–533.PubMedGoogle Scholar
  116. Rosser, D. S. E., Ashby, M. N., Ellis, J. L., and Edwards, P. A., 1989, Coordinate regulation of 3-hydroxy-3-methylglutaryl-coenzyme A synthase, 3-hydroxy-3-methylglutaryl-coenzyme A reductase, and prenyltransferase synthesis but not degradation in HepG2 cells, J. Biol. Chem. 264:12653–12656.PubMedGoogle Scholar
  117. Rossignol, D. P., Scher, M., Waechter, C. J., and Lennarz, W. J., 1983, Metabolic interconversion of dolichol and dolichyl phosphate during development of the sea urchin embryo, J. Biol. Chem. 258:9122–9127.PubMedGoogle Scholar
  118. Rudney, H., and Sexton, R. C., 1986, Regulation of cholesterol biosynthesis, Annu. Rev. Nutr. 6:245–272.PubMedGoogle Scholar
  119. Rudney, H., Sexton, R. C., Gupta, A. K., and Panini, S. R., 1987, Regulation of isoprenoid biosynthesis: Oxygenated sterols as modulators of HMG-CoA reductase activity, Chem. Scr. 27:57–62.Google Scholar
  120. Sagami, H., Matsuoka, S., and Ogura, K., 1991, Formation of Z,Z,E-geranylgeranyl diphosphate by rat liver microsomes, J. Biol. Chem. 266:3458–3463.PubMedGoogle Scholar
  121. Schmidt, R. A., Schneider, C. J., and Glomset, J. A., 1984, Evidence forposttranslational incorporation of a product of mevalonic acid into Swiss 3T3 cell proteins, J. Biol. Chem. 259:10175–10180.PubMedGoogle Scholar
  122. Schroepfer, G. J., 1981, Sterol biosynthesis, Annu. Rev. Biochem. 50:585–621.PubMedGoogle Scholar
  123. Schroepfer, G. J., 1982, Sterol biosynthesis, Annu. Rev. Biochem. 51:555–585.PubMedGoogle Scholar
  124. Schutzbach, J. S., Jensen, J. W., Lai, C. S., and Monti, J. A., 1987, Membrane structure and mannosyltransferase activities: The effects of dolichols on membranes, Chem. Scr. 27:109–118.Google Scholar
  125. Simonet, W. S., and Ness, G. C., 1989, Post-transcriptional regulation of 3-hydroxy-3-methylglutaryl-CoA reductase mRNA in rat liver: Glucocorticoids block the stabilization caused by thyroid hormones, J. Biol. Chem. 264:569–573.PubMedGoogle Scholar
  126. Sindelar, P., Chojnacki, T., and Valtersson, C., 1992, Phosphatidylethanolamine: dolichol acyltransferase: Characterization and partial purification of a novel rat liver enzyme, J. Biol. Chem. 267:20594–20599.PubMedGoogle Scholar
  127. Söderberg, M., Edlund, C., Alafuzoff, I., Kristensson, K., and Daliner, G., 1992, Lipid composition in different regions of the brain in Alzheimer’s disease/senile dementia of Alzheimer’s type, J. Neurochem. 59:1646–1653.PubMedGoogle Scholar
  128. Stamellos, K. D., Shackelford, J. E., Tanaka, R. D., and Krisans, S. K., 1992, Mevalonate kinase is localized in rat liver peroxisomes, J. Biol. Chem. 267:5560–5568.PubMedGoogle Scholar
  129. Steinberg, D., Avigan, J., and Feigelson, E. B., 1961, Effects of triparanol (MER-29) on cholesterol biosynthesis and the blood sterol levels in man, J. Clin. Invest. 40:884–893.PubMedGoogle Scholar
  130. Steinberg, D., Parthasarathy, S., Carew, T. E., Khoo, J. C., and Witztum, J. L., 1989, Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity, N. Engl. J. Med. 320:915–924.PubMedGoogle Scholar
  131. Stoll, J., Rosenwald, A. G., and Krag, S. S., 1988, A Chinese hamster ovary cell mutant F2A8 utilizes polyprenol rather than dolichol for its lipid-dependent asparagine-linked glycosylation reactions, J. Biol. Chem. 263:10774–10782.PubMedGoogle Scholar
  132. Struck, D. O. K., and Lennarz, W. I. J., 1980, The function of saccharide-lipids in synthesis of glycoproteins, in: The Biochemistry of Glycoproteins and Proteoglycans (W. I. J. Lennarz, ed.), pp. 35–84, Plenum Press, New York.Google Scholar
  133. Swiezewska, E., Dallner, G., Andersson, B., and Ernster, L., 1992, Biosynthesis of ubiquinone and plastoquinone in the endoplasmic reticulum-Golgi membranes of spinach leaves, J. Biol. Chem. 268:1494–1499.Google Scholar
  134. Teclebrahan, M., Olsson, M. J., Swiezewska, E., and Dallner, G., 1993, Biosynthesis of the side chain of ubiquinone: trans-prenyltransferase in rat liver microsomes, J. Biol. Chem., (in press).Google Scholar
  135. Thelin, A., Löw, P., Chojnacki, T., and Dallner, G., 1991, Covalent binding of dolichyl phosphate to proteins in rat liver, Eur. J. Biochem. 195:755–761.PubMedGoogle Scholar
  136. Thompson, S. L., and Krisans, S. K., 1990, Rat liver peroxisomes catalyze the initial step in cholesterol synthesis: The condensation of acetyl-CoA units into acetoacetyl-CoA, J. Biol. Chem. 265:5731–5735.PubMedGoogle Scholar
  137. Thompson, S. L., Burrows, R., Laub, R. J., and Krisans, S. K., 1987, Cholesterol synthesis in rat liver peroxisomes. Conversion of mevalonic acid to cholesterol, J. Biol. Chem. 262:17420–17425.PubMedGoogle Scholar
  138. Tollbom, Ö., and Dallner, G., 1986, Dolichol and dolichyl phosphates in human tissues, Br. J. Exp. Pathol. 67:757–764.PubMedGoogle Scholar
  139. Tollbom, Ö., Valtersson, C., Chojnacki, T., and Dallner, G., 1988, Esterification of dolichol in rat liver, J. Biol. Chem. 263:1347–1352.PubMedGoogle Scholar
  140. Tollbom, Ö, Chojnacki, T., and Dallner, G., 1989, Hydrolysis of dolichyl esters in rat liver lysosomes, J. Biol. Chem. 264:9836–9841.PubMedGoogle Scholar
  141. Turley, S. D., and Dietschy, J. M., 1988, The metabolism and excretion of cholesterol by the liver, in: The Liver, Biology and Pathobiology (I. M. Arias, W. B. Jakoby, H. Popper, and D. Schachter, eds.), pp. 617–641, Raven Press, New York.Google Scholar
  142. Valtersson, C., van Duijn, G., Verkleij, A. J., Chojnacki, T., de Kruijff, B., and Dallner, G., 1985, The influence of dolichol, dolichol esters, and dolichyl phosphate on phospholipid polymorphism and fluidity in model membranes, J. Biol. Chem. 260:2742–2751.PubMedGoogle Scholar
  143. van den Bossche, H., Willemsen, G., Cools, W., Cornellisen, F., Lauwers, W. F., and van Cutsem, J. M., 1980, In vitro and in vivo effects of the antimycotic drug ketoconazole on sterol synthesis, Antimicrob. Agents Chemother. 17:922–928.PubMedGoogle Scholar
  144. van Dijck, P. W., de Kruijff, B., van Deenen, L. L., de Gier, J., and Demel, R. A., 1976, The preference of cholesterol for phosphatidylcholine in mixed phosphatidylcholinephosphatidylethanolamine bilayers, Biochim. Biophys. Acta 455:576–587.PubMedGoogle Scholar
  145. van Duijn, G., Valtersson, C., Chojnacki, T., Verkleif, A. J., Dallner, G., and de Kruijff, B., 1986, Dolichyl phosphate induces non-bilayer structures, vesicle fusion and transbilayer movement of lipids: A model membrane study, Biochim. Biophys. Acta 861:211–223.PubMedGoogle Scholar
  146. van Duijn, G., Verkleij, A. J., de Kruijff, B., Valtersson, C., Dallner, G., and Chojacki T., 1987, Influence of dolichols on lipid polymorphism in model membranes and the consequences for phospholipid flip-flop and vesicle fusion, Chem. Scri. 27:95–100.Google Scholar
  147. Yamamura, Y., 1985, A survey of the therapeutic uses of coenzyme Q, in: Biochemistry, Bioenergetics and Clinical Applications of Ubiquinone (G. Lenaz, ed.), pp. 479–505, Wiley, New York.Google Scholar
  148. Zambrano, F., Fleischer, S., and Fleischer, B., 1975, Lipid composition of the Golgi apparatus of rat kidney and liver in comparison with other subcellular organelles, Biochim. Biophys. Acta 380:357–369.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Johan Ericsson
    • 1
    • 2
  • Gustav Dallner
    • 1
    • 2
  1. 1.Department of BiochemistryUniversity of StockholmStockholmSweden
  2. 2.Clinical Research Center at Huddinge Hospital, Karolinska InstitutetHuddingeSweden

Personalised recommendations