Microbial Alcohol, Aldehyde and Formate Ester Oxidoreductases

  • Peter W. van Ophem
  • Johannis A. Duine
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 328)


Formation of alcohols by natural processes takes place in the fermentative breakdown of sugars and the oxidative dissimilation of alkanes. In view of the wide-spreadness of these processes, it is understandable that many microbial species have the capacity to degrade these compounds. Formaldehyde takes a prominent position among the aldehydes found in Nature. The reason is the frequent occurrance of natural (e.g. methylated amines) as well as man-made C1-compounds (industrial solvents like DMSO and DMF are used at large scale as well as methylated and methoxylated bulk chemicals, leading to contamination of the environment with these compounds) which are degraded via formaldehyde by a variety of C1-compounds-utilizing microbes, the so-called methylotrophs. However, also adventitious formaldehyde formation takes place, e.g. in organisms using methylated amines as a nitrogen source or in organisms using pectins, the degradation process liberating methanol from the esterified groups which can be converted to formaldehyde by alcohol oxidizing enzymes. Since formaldehyde is a toxic compound but the ability to assimilate it is confined to methylotrophs, it is obvious that most micro-organisms have developed an oxidative system to get rid of this compound.


Alcohol Dehydrogenase Aldehyde Dehydrogenase Pseudomonas Putida Alcohol Oxidase Acetic Acid Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, S.H.G., 1982, Lactate-oxaloacetate transhydrogenase from Veillonella alcalescens, Methods Enzymol. 89: 367.PubMedCrossRefGoogle Scholar
  2. Ameyama, M., and Adachi, O., 1982, Alcohol dehydrogenase from acetic acid bacteria, membrane bound, Methods Enzymol. 89: 450.CrossRefGoogle Scholar
  3. Anthony, C., 1992, The structure of bacterial quinoprotein dehydrogenases, Int. J. Biochem. 24: 29.PubMedCrossRefGoogle Scholar
  4. Arfman, N., Van Beeumen, J., De Vries, G.E., Harder, W., and Dijkhuizen, L., 1991, Purification and characterization of an activator protein for methanol dehydrogenase from thermotolerant Bacillus spp., J. Biol. Chem. 266: 3955.PubMedGoogle Scholar
  5. Bystrykh, L.V., Dijkhuizen, L., and Harder, W., 1991, Modification of flavin adenine dinucleotide in alcohol oxidase of the yeast Hansenula polymorpha, J. Gen. Microbiol. 137: 2381.PubMedCrossRefGoogle Scholar
  6. Caspritz, G. and Radler, F., 1983, Malolactic enzyme of Lactobacillus plantarum. J. Biol. Chem. 258: 4907.PubMedGoogle Scholar
  7. Chalmers, R.M. Keen, J.N., and Fewson, C.A., 1991, Comparison of benzylalcohol dehydrogenase and benzaldehyde dehydrogenases from Acinetobacter calcoaceticus and from Pseudomonas putida, Biochem. J. 273: 99.PubMedGoogle Scholar
  8. Cox, R.B., and Quayle, J.R., 1975, The autotrophic growth of Micrococcus denitrificans on methanol, Biochem. J. 150: 569.PubMedGoogle Scholar
  9. De Vries, G.E., Arfman, N., Terpstra, P., and Dijkhuizen, L., 1992, Cloning, expression and sequence analysis of the methanol dehydrogenase gene from Bacillus sp. strain C1, J. Bacteriol, 174: 5346.PubMedGoogle Scholar
  10. Dickinson, F.M., and Wadforth, C., 1992, Purification and some properties of alcohol oxidase from alkane-grown Candida tropicalis, Biochem. J. 282: 325.PubMedGoogle Scholar
  11. Duine, J.A., Frank, J., and Berkhout, M.P.J., 1984, NAD-dependent PQQ-containing methanol dehydrogenase: a bacterial dehydrogenase in a multi-enzyme complex, FEBS Lett. 168: 217.PubMedCrossRefGoogle Scholar
  12. Duine, J.A., 1991, Quinoproteins: enzymes containing the quinonoid cofactor pyrroloquinoline quinone (PQQ), topaquinone (TPQ) or tryptophanyl tryptophan quinone (TTQ), Eur. J. Biochem. 200: 271.PubMedCrossRefGoogle Scholar
  13. Duine, J.A., Van Dijken, J.P., 1991, Enzymes of industrial potential in methylotrophs, in: “Biology of Methylotrophs,” J. Goldberg, and J.S. Rokem, eds., Butterworth-Heinemann, Boston, p. 233.Google Scholar
  14. Fahey, R.C., and Newton, G.L., 1983, Occurence of low molecular weight thiols in biological systems, in: “Functions of glutathione,“ A. Larsson et al., ed., Raven Press, New York, p. 251.Google Scholar
  15. Frey, P.A., 1987, Complex pyridine nucleotide-dependent transformations, in: “Pyridine nucleotide coenzymes,” D. Dolphin et al., ed., John Wiley & Sons, New York.Google Scholar
  16. Geerlof, A., Van Tol, J.B.A., Jongejan, J.A., and Duine J.A., 1992, Microbial alcohol/aldehyde oxidoreductases in enantioselective conversion, in: “Microbial Reagents in Organic Synthesis,” S. Servi, ed., Kluwer Acad. Publ., Dordrecht, in pressGoogle Scholar
  17. Groeneveld, A., Dijkstra, M. and Duine, J.A, 1984, Cyclopropanol in the exploration of bacterial alcohol oxidation, FEMS Microbiol Lett. 25: 311.CrossRefGoogle Scholar
  18. Gutheil, W.G., Holmquist, B., and Vallee, B.L., 1992, Purification, characterization, and partial sequence of the glutathione-dependent formaldehyde dehydrogenase from Escherichia coli, Biochemistry 31: 475.PubMedCrossRefGoogle Scholar
  19. Heim R., and Strehler, E.E., 1991, Cloning an Escherichia coli gene encoding a protein remarkably similar to mammalian aldehyde dehydrogenases, Gene 99: 15.PubMedCrossRefGoogle Scholar
  20. Inoue, T., Sunagawa, M., Mori, A., Imai, C., Fukuda, M, Takagi, M, and Yano, K., 1990, Possible functional domains in a quinoprotein alcohol dehydrogenase from Acetobacter aceti, J. Ferm. Bioeng. 70: 58.CrossRefGoogle Scholar
  21. Jörnvall, H., Persson, B., and Jeffery, J., 1987, Characteristics of alcohol/polyol dehydrogenases, Eur. J. Biochem. 167: 195.PubMedCrossRefGoogle Scholar
  22. Kato, N., Yamagami, T., Shimao, M., and Sakazawa, C., 1986, Formaldehyde dismutase, a novel NAD-binding oxidoreductase from Pseudomonas putida F61, Eur. J. Biochem. 156: 59.PubMedCrossRefGoogle Scholar
  23. Kirkman, H.N., and Gaetani, C.F., 1984, Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH, Proc. Natl. Acad. Sci. 81: 4343.PubMedCrossRefGoogle Scholar
  24. Kok, M., Oldenhuis, R., Van der Linden, M., Meulenberg, C.H.C., Kingma, J., and Witholt, B., 1989, The Pseudomonas oleovorans alk BAC Operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase, J. Biol. Chem., 264: 5442.PubMedGoogle Scholar
  25. Koivusalo, M., Baumann, M., and Uotila, L., 1989, Evidence for the identity of glutathione-dependent formaldehyde dehydrogenase and class III alcohol dehydrogenase, FEBS Lett. 257: 105.PubMedCrossRefGoogle Scholar
  26. Ledeboer, A.M., Edens, L., Maat, J., Visser, G., Bos, J.W., Verrips, C.T., Janowicz, Z., Eckart, M. and Hollenberg, C.P., 1985, Molecular cloning and characterization of a gene coding for methanol oxidase in Hansenula potymorpha, Nucleic Acids Res. 13: 3063.PubMedCrossRefGoogle Scholar
  27. Long, A.R., and Anthony, C., 1990, Modifier protein for methanol dehydrogenase of methylotrophs, Methods Enzymol. 188: 216.CrossRefGoogle Scholar
  28. Mason, R.P., and Sanders, J.K.M., 1989, In vivo enzymology: a deuterium NMR study of formaldehyde dismutase in Pseudomonas putida F61a and Staphylococcus aureus, Biochemistry 28: 2160.Google Scholar
  29. Mukund, S., and Adams, M.W.W., 1991, The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium Pyrococcus furiosis, is an aldehyde ferredoxin oxidoreductase, J. Biol. Chem. 266: 14208.PubMedGoogle Scholar
  30. Ogushi, S., Ando, M., and Tsuru, D., 1984, Substrate specificity of formaldehyde dehydrogenase from Pseudomonas putida, Agric. Biol. Chem. 48: 597.CrossRefGoogle Scholar
  31. Ogushi, S., Ando, M. and Tsuru, D., 1986, Formaldehyde dehydrogenase from Pseudomonas putida: the role of a cysteinyl residue in the enzyme activity, Agric. Biol. Chem. 50: 2503.CrossRefGoogle Scholar
  32. Patel, R.N., Hou, C.T., Derelanko, P., and Felix, A., 1980, Purification and properties of a heme-containig aldehyde dehydrogenase from Methylosinus trichosporium, Archiv. Biochem. Biophys. 203: 654.CrossRefGoogle Scholar
  33. Pocker, Y, and Page, J.D., 1990, Zinc-activated alcohols in ternary complexes of liver alcohol dehydrogenase, J. Biol. Chem. 265: 2 2101.Google Scholar
  34. Poels, P.A., Groen, B.W., and Duine, J.A., 1987, NAD(P)-independent aldehyde dehydrogenase from Pseudomonas testosteroni, Eur. J. Biochem. 166: 575.PubMedCrossRefGoogle Scholar
  35. Tamaki, T., Fukaya, M., Takemura, H., Tayama, K., Okumura, H., Kawamura, Y., Nishiyama, M., Horinouchi, S., and Beppu, T., 1991, Cloning and sequencing of the gene cluster encoding two subunits of membrane-bound alcohol dehydrogenase from Acetobacter polyoxogenes, Biochim. Biophys. Acta 1088: 292.PubMedCrossRefGoogle Scholar
  36. Tamaki, T., Horinouchi, S., Fukaya, M., Okumura, H., Kawamura, Y., and Beppu, T., 1989, Nucleotide sequence of the membrane-bound aldehyde dehydrogenase gene from Acetobacter polyoxogenes, J. Biochem. 106: 541.PubMedGoogle Scholar
  37. Turner, N., Barata, B., Bray, R.C., Deistung, J., Le Gall, J., and Moura, J.J.G., 1987, The molybdenum iron-sulphur protein from Desulfovibrio gigas as a form of aldehyde oxidase, Biochem. J. 243: 755.PubMedGoogle Scholar
  38. Van Ophem, P.W., Euverink, G.J., Dijkhuizen, L. and Duine, J.A., 1991, A novel dye-linked alcohol dehydrogenase present in some Gram-positive bacteria, FEMS Microbiol. Lett. 80: 57.CrossRefGoogle Scholar
  39. Van Ophem, P.W., Bystrykh, L.V., and Duine, J.A., 1992a, Dye-linked dehydrogenase activities for formate and formate esters in Amycolatopsis methanolica, Eur. J. Biochem. 206: 519.PubMedCrossRefGoogle Scholar
  40. Van Ophem, P.W., Van Beeumen, J., and Duine, J.A., 1992b, NAD-linked, factor-dependent formaldehyde dehydrogenase or trimeric, zinc-containing, long-chain alcohol dehydrogenase from Amycolatopsis methanolica, Eur. J. Biochem. 206: 511.PubMedCrossRefGoogle Scholar
  41. White, H., Strobl, G., Feicht, R., and Simon, H., 1989, Carboxylic acid reductase: a new tungsten enzyme catalyses the reduction of non-activated carboxylic acids to aldehydes, Eur. J. Biochem. 184: 89.PubMedCrossRefGoogle Scholar
  42. Woodward, J.R., 1990, in: “Autotrophic Microbiology and one-carbon metabolism”, Vol I, G.A Codd, L. Dijkhuizen, and F.R. Tabita, eds., Kluwer Ac. Publ., Dordrecht, p. 193.CrossRefGoogle Scholar
  43. Zachariou, M., Scopes, R.K., 1986, Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production, J. Bacteriol. 167: 863.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Peter W. van Ophem
    • 1
  • Johannis A. Duine
    • 1
  1. 1.Department of Microbiology & EnzymologyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations