Advertisement

Location of an Essential Arginine Residue in the Primary Structure of Pig Aldose Reductase

  • Terrance J. Kubiseski
  • Nancy C. Green
  • T. Geoffrey Flynn
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 328)

There have been several recent advances in the elucidation of the structure and mechanism of action of aldose reductase (ALR2; EC 1.1.1.21). The enzyme exhibits ordered sequential kinetics and during the kinetic mechanism a conformational change occurs upon coenzyme binding (Grimshaw et al., 1990; Kubiseski et al., 1992). Unlike most oxidoreductases the rate limiting step is not the release of NADP+ but rather, in the forward direction at least, the rate of isomerization of the binary enzyme-coenzyme complex, E*•NADP⇄E•NADP (Kubiseski et al., 1992). Chemical modification studies previously have suggested several amino acid residues essential for the function of the enzyme e.g. lysine (Morjana et al., 1989), arginine (Halder et al., 1985) and cysteine (Liu et al., 1989). The cloning and sequencing of ALR2 from several species has enabled the precise location of such residues in the primary structure (Carper et al., 1987; Garcia-Perez et al., 1989; Nishimura et al., 1990; Schade et al., 1990). Moreover, the development of expression systems for ALR2 has allowed an examination of critical residues by site-directed mutagenesis (Bohren et al., 1991; Yamaoka et al., 1992).

Keywords

Aldose Reductase Aldehyde Reductase Chemical Modification Study Human Aldose Reductase Coenzyme Binding Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhatnagar, A., Das, B. & Srivastava, S.K., 1987, Diethyl pyrocarbonate inactivation of human placental aldehyde reductase II of Texas Medical Branch, Galveston 77550, Biochim. Biophys. Acta 916: 179.PubMedCrossRefGoogle Scholar
  2. Bohren, K.M., Bullock, B., Wermuth, B. & Gabbay, K.H., 1989, The aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases, J. Biol. Chem. 264: 9547.PubMedGoogle Scholar
  3. Bohren, K.M., Page, J.L., Shankar, R., Henry, S.P. & Gabbay, K.H., 1991, Expression of human aldose and aldehyde reductases. Site-directed mutagenesis of a critical lysine 262, J. Biol. Chem. 266: 24031.PubMedGoogle Scholar
  4. Carper, D., Nishimura, C., Shinohara, T., Dietzchold, B., Wistow, G., Craft, C., Kador, P. & Kinoshita, J.H., 1987, Aldose reductase and p-crystallin belong to the same protein superfamily as aldehyde reductase, FEBS. Lett. 220: 209.PubMedCrossRefGoogle Scholar
  5. Cromlish, J.A. & Flynn, T.G., 1983, Identity of pig muscle aldehyde reductase with pig lens aldose reductase and with the low KM aldehyde reductase of pig brain and pig kidney, J. Biol. Chem. 258: 3583.PubMedGoogle Scholar
  6. Feinberg, A.P. & Vogelstein, B., 1983, A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity, Anal. Biochem. 132: 6.PubMedCrossRefGoogle Scholar
  7. Garcia-Perez, A., Martin, B., Murphy, H.R., Uchida, S., Murer, H., Cowley, B.D., Jr., Handler, J.S. & Burg, M.B., 1989, Molecular cloning of cDNA coding for kidney aldose reductase. Regulation of specific mRNA accumulation by NaCl-mediated osmotic stress, J. Biol. Chem. 264: 16815.PubMedGoogle Scholar
  8. Grimshaw, C.E., Shahbaz, M. & Putney, C.G., 1990, Mechanistic basis for nonlinear kinetics of aldehyde reduction catalyzed by aldose reductase, Biochemistry 29: 9947.PubMedCrossRefGoogle Scholar
  9. Halder, A.B., James, M. & Crabbe, C., 1985, Chemical modification studies on purified bovine lens aldose reductase, Ophthalmic. Res. 17: 185.PubMedCrossRefGoogle Scholar
  10. Kubiseski, T.J., Hyndman, D.J., Morjana, N.A. & Flynn, T.G., 1992, Studies on pig muscle aldose reductase. Kinetic mechanism and evidence for a slow conformational change upon coenzyme binding, J. Biol. Chem. 267: 6510.PubMedGoogle Scholar
  11. Liu, S., Bhatnagar, A., Das, B. & Srivastava, S.K., 1989, Functional cysteinyl residues in human placental aldose reductase, Arch. Biochem. Biophys. 275: 112.PubMedCrossRefGoogle Scholar
  12. Maniatis, T., Fritsch, E.F. & Sambrook, J. (1982) Molecular Cloning; A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  13. Morjana, N.A., Lyons, C. & Flynn, T.G., 1989, Aldose reductase from human psoas muscle. Affinity labeling of an active site lysine by pyridoxal 5’-phosphate and pyridoxal 5’-diphospho-5’-adenosine, J. Biol. Chem. 264: 2912.PubMedGoogle Scholar
  14. Nihira, T., Toraya, T. & Fukui, S., 1981, Modification of tryptophanase with tetranitromethane, Eur. J. Biochem. 119: 273.PubMedCrossRefGoogle Scholar
  15. Nishimura, C., Matsuura, Y., Kokai, Y., Akera, T., Carper, D., Morjana, N., Lyons, C. & Flynn, T.G., 1990, Cloning and expression of human aldose reductase, J. Biol. Chem. 265: 9788.PubMedGoogle Scholar
  16. Penefsky, S.H., 1971, A centrifuged-column procedure for the measurement of ligand binding by beef heart F1, Methods Enzymol. 56: 527.CrossRefGoogle Scholar
  17. Rondeau, J.-M., Tête-Favier, F., Podjarny, A., Reymann, J.-M., Barth, P., Biellmann, J.-F. & Moras, D., 1992, Novel NADPH-binding domain revealed by the crystal structure of aldose reductase, Nature 355: 469.PubMedCrossRefGoogle Scholar
  18. Saiki, R.K., Scharf, S., Faloona, F., Mullis, D.B., Horn, G.T., Erlich, H.A. & Arnhein, N., 1985, Enzymatic amplification of ß-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia, Science 230: 1350.PubMedCrossRefGoogle Scholar
  19. Schade, S.Z., Early, S.L., Williams, T.R., Kézdy, F.J., Heinrikson, R.L., Grimshaw, C.E. & Doughty, C.C., 1990, Sequence analysis of bovine lens aldose reductase, J. Biol. Chem. 265: 3628.PubMedGoogle Scholar
  20. Stone, C.L., Li, T.-K. & Bosron, W.F., 1989, Stereospecific oxidation of secondary alcohols by human alcohol dehydrogenases, J. Biol. Chem. 264: 11112.PubMedGoogle Scholar
  21. Wilson, D.K., Bohren, K.M., Gabbay, K.H. & Quiocho, F.A., 1992, An unlikely sugar substrate site in the 1.65 Å structure of the human aldose reductase holoenzyme implicated in diabetic complications, Science 257: 81.PubMedCrossRefGoogle Scholar
  22. Yamaoka, T., Matsuura, Y., Yamashita, K., Tanimoto, T. & Nishimura, C., 1992, Site-directed mutagenesis of His-42, His-188 and Lys-263 of human aldose reductase, Biochem. Biophys. Res. Commun. 183: 327.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Terrance J. Kubiseski
    • 1
  • Nancy C. Green
    • 1
  • T. Geoffrey Flynn
    • 1
  1. 1.Department of BiochemistryQueen’s UniversityKingstonCanada

Personalised recommendations