Extravasation and Interstitial Transport in Tumors

  • Rakesh K. Jain
  • Laurence T. Baxter
Part of the Pharmaceutical Biotechnology book series (PBIO, volume 4)


The use of high-molecular-weight agents such as proteins has been of increasing interest for cancer detection and treatment since the development of genetic engineering and hybridoma technology. These agents include monoclonal antibodies (conjugated with radionuclides, toxins, cytokines, or enzymes), growth factors, biological response modifiers, and enzymes. The use of cells, such as lymphokine-activated killer cells or tumor-infiltrating lymphocytes, is also being investigated. The potent toxicity of some of these agents toward cancer cells in vitro has ignited hopes for a “magic bullet.” Although these agents show great potential, results in clinical studies have not been so positive.


Permeability Coefficient Fluorescence Recovery After Photobleaching Interstitial Pressure Fluid Filtration Interstitial Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ballard, K., and Perl, W., 1978, Osmotic reflection coefficients of canine subcutaneous adipose tissue endothelium, Microvasc. Res. 16:224–236.PubMedCrossRefGoogle Scholar
  2. Baxter, L. T., and Jain, R. K., 1988, Vascular permeability and interstitial diffusion in superfused tissues: A two-dimensional model, Microvasc. Res. 36:108–115.PubMedCrossRefGoogle Scholar
  3. Baxter, L. T., and Jain, R. K., 1989, Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection, Microvasc. Res. 37:77–104.PubMedCrossRefGoogle Scholar
  4. Baxter, L. T., and Jain, R. K., 1990, Transport of fluid and macromolecules in tumors. II. Role of heterogeneous perfusion and lymphatics, Microvasc. Res. 40:246–263.PubMedCrossRefGoogle Scholar
  5. Baxter, L. T., and Jain, R. K., 1991a, Transport of fluid and macromolecules in tumors. III. Role of binding and metabolism, Microvasc. Res. 41:5–23.PubMedCrossRefGoogle Scholar
  6. Baxter, L. T., and Jain, R. K., 1991b, Transport of fluid and macromolecules in tumors. IV. A microscopic model of the perivascular distribution, Microvasc. Res. 41:252–272.PubMedCrossRefGoogle Scholar
  7. Baxter, L. T., Jain, R. K., and Svensjö, E., 1987, Vascular permeability and interstitial diffusion of macromolecules in the hamster cheek pouch: Effect of vasoactive drugs, Microvasc. Res. 34:336–348.PubMedCrossRefGoogle Scholar
  8. Baxter, L. T., Yuan, F., and Jain, R. K., 1992, Pharmacokinetic analysis of the perivascular distribution of bifunctional antibodies and haptens: comparison with experimental data, Cancer Res. 52:5838–5844.PubMedGoogle Scholar
  9. Boucher, Y., and Jain, R. K., 1992, Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: Implications for vascular collapse, Cancer Res. 52:5110–5114.PubMedGoogle Scholar
  10. Boucher, Y., Baxter, L. T., and Jain, R. K., 1990, Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: Implications for therapy, Cancer Res. 50:4478–4484.PubMedGoogle Scholar
  11. Boucher, Y., Kirkwood, J., Opacic, D., Desantis, M., and Jain, R. K., 1991, Interstitial hypertension in superficial metastatic melanomas in humans, Cancer Res. 51:6691–6694.PubMedGoogle Scholar
  12. Bundagaard, M., Hagman, P., and Crone, C., 1983, The three-dimensional organization of plasmalemmal vesicular profiles in the endothelium of rat heart capillaries, Microvasc. Res. 25:358–368.CrossRefGoogle Scholar
  13. Butler, T. P., Grantham, F. H., and Gullino, P. M., 1975, Bulk transfer of fluid in the interstitial compartment of mammary tumors, Cancer Res. 35:3084–3088.PubMedGoogle Scholar
  14. Chary, S. R., and Jain, R. K., 1987, Analysis of diffusive and convective recovery of fluorescence after photobleaching—Effect of uniform flow field, Chem. Eng. Commun. 55:235–249.CrossRefGoogle Scholar
  15. Chary, S. R., and Jain, R. K., 1989, Direct measurement of interstitial diffusion and convection of albumin in normal and neoplastic tissues using fluorescence photobleaching, Proc. Natl. Acad. Sci. USA 86:5385–5389.PubMedCrossRefGoogle Scholar
  16. Clauss, M. A., and Jain, R. K., 1990, Interstitial transport of rabbit and sheep antibodies in normal and neoplastic tissues, Cancer Res. 50:3487–3492.PubMedGoogle Scholar
  17. Curry, F. E., 1984, Mechanics and thermodynamics of transcapillary exchange, in: Handbook of Physiology, Section 2 (E. M. Renkin and C. C. Michel, eds.), American Physiological Society, Bethesda, pp. 309–374.Google Scholar
  18. Curry, F. E., Mason, J. C., and Michel, C. C., 1976, Osmotic reflection coefficients of capillary walls to low molecular weight hydrophilic solutes measured in single perfused capillaries of the frog mesentery, J. Physiol. (London) 261:319–336.Google Scholar
  19. Dewey, W. C., 1959, Vascular—extravascular exchange of I-131 plasma proteins in the rat, Am. J. Physiol. 197:423–431.PubMedGoogle Scholar
  20. Epstein, A. L., Chen, F. M., and Taylor, C., 1988, A novel method for the detection of necrotic lesions in human cancers, Cancer Res. 48:5842–5848.PubMedGoogle Scholar
  21. Fox, J. R., and Wayland, H., 1979, Interstitial diffusion of macromolecules in the rat mesentery, Microvasc. Res. 18:255–276.PubMedCrossRefGoogle Scholar
  22. Frokjaer-Jensen, J., 1980, Three-dimensional organization of plasmalemmal vesicles in endothelial cells. An analysis by serial sectioning of frog mesenteric capillaries, J. Ultrastruct. Res. 73:9–20.PubMedCrossRefGoogle Scholar
  23. Fujimori, K., Covell, D. G., Fletcher, J. E., and Weinstein, J. N., 1989, Modeling analysis of the global and microscopic distribution of immunoglobulin G, F(ab′)2, and Fab in tumors, Cancer Res. 49:5656–5663.PubMedGoogle Scholar
  24. Gerlowski, L. E., and Jain, R. K., 1986, Microvascular permeability of normal and neoplastic tissues, Microvasc. Res. 31:288–305.PubMedCrossRefGoogle Scholar
  25. Gutmann, R., Leunig, M., Feyh, J., Goetz, A. E., Messmer, K., Kastenbauer, E., and Jain, R. K., 1992, Interstitial hypertension in head and neck tumors in patients: Correlation with tumor size, Cancer Res. 52:1993–1995.PubMedGoogle Scholar
  26. Jain, R. K., 1987a, Transport of molecules across tumor vasculature, Cancer Metastasis Rev. 6: 559–594.PubMedCrossRefGoogle Scholar
  27. Jain, R. K., 1987b, Transport of molecules in the tumor interstitium: A review, Cancer Res. 47: 3039–3051.PubMedGoogle Scholar
  28. Jain, R. K., 1988, Determinants of tumor blood flow: A review, Cancer Res. 48:2641–2658.PubMedGoogle Scholar
  29. Jain, R. K., 1990, Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors, Cancer Res. (Suppl.) 50:814s–819s.PubMedGoogle Scholar
  30. Jain, R. K., and Baxter, L. T., 1988, Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: Significance of interstitial pressure, Cancer Res. 48:7022–7032.PubMedGoogle Scholar
  31. Jain, R. K., and Ward-Hartley, K. A., 1984, Tumor blood flow: Characterization, modifications and role in hyperthermia, IEEE Trans. Sonics Ultrason. SU-31:504–526.CrossRefGoogle Scholar
  32. Jones, P. L., Gallagher, B. M., and Sands, H., 1986, Autoradiographic analysis of monoclonal antibody distribution in human colon and breast tumor xenografts, Cancer Immunol. Immunother. 22:139–143.PubMedCrossRefGoogle Scholar
  33. Kaufman, E. N., and Jain, R. K., 1990, Quantification of transport and binding parameters using FRAP: Potential for in vivo applications, Biophys. J. 58:873–885.PubMedCrossRefGoogle Scholar
  34. Less, J. R., Posner, M. C., Boucher, Y., Borochovitz, D., Wolmark, N., and Jain, R. K., 1992, Interstitial hypertension in human breast and colorectal tumors, Cancer Res. 52:6371–6374.PubMedGoogle Scholar
  35. Misiewicz, M. A., 1986, Microvascular and interstitial pressure in normal and neoplastic tissues, M.S. thesis, Carnegie Mellon University, Pittsburgh.Google Scholar
  36. Nugent, L. J., and Jain, R. K., 1984, Extravascular diffusion in normal and neoplastic tissues, Cancer Res. 44:238–244.PubMedGoogle Scholar
  37. O’Conner, S. W., and Bale, W. F., 1984, Accessibility of circulating immunoglobulin G to the extravascular compartment of solid rat tumors, Cancer Res. 44:3719–3723.Google Scholar
  38. Patlak, C. S., Goldstein, D. A., and Hoffman, J. F., 1963, The flow of solute and solvent across a two-membrane system, J. Theor. Biol. 5:426–442.PubMedCrossRefGoogle Scholar
  39. Renkin, E. M., Watson, P. D., Sloop, C. H., Joyner, W. M., and Curry, F. E., 1977, Transport pathways for fluid and large molecules in microvascular endothelium of the dog’s paw, Microvasc. Res. 14:205–214.PubMedCrossRefGoogle Scholar
  40. Rippe, B., and Haraldsson, B., 1987, Fluid and protein fluxes across small and large pores in the microvasculature. Application of two-pore equations, Acta. Physiol. Scand. 131:411–428.PubMedCrossRefGoogle Scholar
  41. Roh, H. D., Boucher, Y., Kaliniki, S., Buchsbaum, R., Bloomer, W. D., and Jain, R. K., 1991, Interstitial hypertension in cervical carcinomas in humans: Possible correlation with tumor oxygenation and radiation response, Cancer Res. 51:6695–6698.PubMedGoogle Scholar
  42. Rutili, G., 1978, Transport of macromolecules in subcutaneous tissue by FITC-dextrans, Ph.D. thesis, University of Upsaliensis, Uppsala, Sweden.Google Scholar
  43. Schlom, J., Hand, P. H., Greiner, J. W., Colcher, D., Shrivastrav, S., Carrasquillo, J. A., Reynolds, J. C., Larson, S. M., and Raubitschek, A., 1990, Innovations that influence the pharmacology of monoclonal antibody guided tumor targeting, Cancer Res. (Suppl.) 50: 820s–827s.PubMedGoogle Scholar
  44. Sevick, E. M., and Jain, R. K., 1991, Measurement of capillary filtration coefficient in a solid tumor, Cancer Res. 51:1352–1355.PubMedGoogle Scholar
  45. Song, C. W., and Levitt, S. H., 1970, Effect of x-irradiation on vascularity of normal tissues and experimental tumor, Radiology 94:445–447.PubMedGoogle Scholar
  46. Stephen, R. L., Novak, J. M., Jensen, E. M., Kablitz, C., and Buys, S. S., 1990, Effect of osmotic pressure on uptake of chemotherapeutic agents by carcinoma cells, Cancer Res. 50:4704–4708.PubMedGoogle Scholar
  47. Stickney, D. R., Slater, J. B., Kirk, G. A., Ahlem, C., Chang, C., and Frincke, J. M., 1989, Bifunctional antibody: ZCE/CHA-indium-111-BLEDTA-IV clinical imaging in colorectal carcinoma, Antibody Immunoconjugates Radiopharm. 2:1–13.Google Scholar
  48. Weinstein, J. N., Steller, M. A., Keenan, A. M., Covell, D. G., Key, M. E., Sieber, S. M., Oldham, R. K., Hwang, K. M., and Parker, R. J., 1983, Monoclonal antibodies in the lymphatics: Selective delivery to lymph node metastases of a solid tumor, Science 222: 423-426.Google Scholar
  49. Weinstein, J. N., Eger, R. R., Covell, D. G., Black, C. D. V., Mulshine, J., Carrasquillo, J. A., Larson, S. M., and Keenan, A. M., 1987, The pharmacology of monoclonal antibodies, Ann. N.Y. Acad. Sci. 507:199–210.PubMedCrossRefGoogle Scholar
  50. Wiig, H., Tveit, E., Hultborn, R., Reed, R. K., and Weiss, L., 1982, Interstitial fluid pressure in DMBA-induced rat mammary tumors, Scand. J. Clin. Lab. Invest. 42:159–164.PubMedCrossRefGoogle Scholar
  51. Young, J. S., Lumsden, C. E., and Stalker, A. L., 1950, The significance of the “tissue pressure” of normal testicular and of neoplastic (Brown—Pearce carcinoma) tissue in the rabbit, J. Pathol. Bacteriol. 62:313–333.PubMedCrossRefGoogle Scholar
  52. Yuan, F., Baxter, L. T., and Jain, R. K., 1991, Pharmacokinetic considerations in two-step approaches using bifunctional and enzyme-conjugated antibodies, Cancer Res. 51:3119–3130.PubMedGoogle Scholar
  53. Yuan, F., Leunig, M., Berk, D., and Jain, R. K., 1993, Microvascular permeability of albumin in human tumor xenograft LS174T in dorsal skin fold chamber of SCID mice, Microvasc. Res. (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Rakesh K. Jain
    • 1
  • Laurence T. Baxter
    • 1
  1. 1.Department of Radiation Oncology, Harvard Medical School, Steele LaboratoryMassachusetts General HospitalBostonUSA

Personalised recommendations