Advertisement

The Early Diagenesis of Organic Matter: Bacterial Activity

  • Jody W. Deming
  • John A. Baross
Part of the Topics in Geobiology book series (TGBI, volume 11)

Abstract

Bacteria are the primary agents of the early diagenesis of organic matter (OM) in marine sediments. The reasons for their predominant roles are straightforward: (1) they occur abundantly and universally throughout all marine sediments; (2) they can respire, reproduce, and, therefore, use OM more rapidly than any other organisms; (3) they possess enzymes and enzyme systems (in many cases, unique to the prokaryotic kingdom) that make them extraordinarily versatile in their nutritional requirements and abilities to alter a wide variety of particulate and dissolved organic (and inorganic) materials; and (4) they readily enter into complex associations with each other and with higher organisms in ways that produce powerful degradative capabilities beyond those of a single organism in isolation.

Keywords

Total Organic Carbon Marine Sediment Sediment Trap Bacterial Activity Abyssal Plain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alldredge, A. L., and Cohen, Y., 1987, Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets, Science 235:689–691.CrossRefGoogle Scholar
  2. Alldredge, A. L., and Silver, M., 1988, Characteristics, dynamics, and significance of marine snow, Prog. Oceanogr. 20:41–82.CrossRefGoogle Scholar
  3. Aller, J. Y., 1989, Quantifying sediment disturbance by bottom currents and its effect on benthic communities in a deep-sea western boundary zone, Deep-Sea Res. 36:901–934.CrossRefGoogle Scholar
  4. Aller, R. C., 1982, The effects of macrobenthos on chemical properties of marine sediment and overlying water, in: Animal-Sediment Interactions (P. L. McCall and M. J. S. Tevesz, eds.), Plenum Press, New York, pp. 53–102.Google Scholar
  5. Aller, R. C., and Aller, J. Y., 1986, Evidence for localized enhancement of biological activity associated with tube and burrow structures in deep-sea sediments at the HEBBLE site, western North Atlantic, Deep-Sea Res. 33:755–790.CrossRefGoogle Scholar
  6. Aller, R. C., and Yingst, J. Y., 1980, Relationships between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of Long Island Sound, USA, Mar. Biol. 56:29–42.CrossRefGoogle Scholar
  7. Alongi, D., 1987a, Bacterial productivity and microbial biomass in tropical mangrove sediments, Microb. Ecol. 15:59–78.CrossRefGoogle Scholar
  8. Alongi, D., 1987b, The distribution and composition of deep-sea microbenthos in a bathyal region of the western Coral Sea, Deep-Sea Res. 34:1245–1254.CrossRefGoogle Scholar
  9. Alongi, D., 1989, The role of soft-bottom benthic communities in tropical mangrove and coral reef ecosystems, Rev. Aquat. Sci. 1(2):243–280.Google Scholar
  10. Alongi, D. M., 1990, Bacterial growth rates, production and estimates of detrital carbon utilization in deep-sea sediments of the Solomon and Coral Seas, Deep-Sea Res. 37:731–746.CrossRefGoogle Scholar
  11. Alperin, M. J., and Reeburgh, W. S., 1984, Geochemical observations supporting anaerobic methane oxidation, in: Microbial Growth on C-1 Compounds (R. L. Crawford and R. S. Hanson, eds.), American Society for Microbiology, Washington, D.C., pp. 282–289.Google Scholar
  12. Alperin, M. J., Reeburgh, W. S., and Whiticar, M. J., 1988, Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation, Glob. Biogeochem. Cycles 2:279–288.CrossRefGoogle Scholar
  13. Archer, D., Emerson, S., and Smith, C. R., 1989, Direct measurements of the diffusive sublayer at the deep sea floor using oxygen microelectrodes, Nature 340:623–626.CrossRefGoogle Scholar
  14. Atlas, R. M., and Griffiths, R. P., 1984, Bacterial populations of the Beaufort Sea, in: The Alaskan Beaufort Sea: Ecosystems and Environments (P. W. Barnes, D. M. Schell, and E. Reimnitz, eds.), Academic Press, New York, pp. 327–345.Google Scholar
  15. Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and Thingstad, F., 1983, The ecological role of water-column microbes in the sea, Mar. Ecol. Prog. Ser. 10:257–263.CrossRefGoogle Scholar
  16. Banse, K., 1964, On the vertical distribution of Zooplankton in the sea, Prog. Oceanogr. 2:53–125.CrossRefGoogle Scholar
  17. Battersby, N. S., and Brown, C. M., 1982, Microbial activity in organically enriched marine sediments, in: Sediment Microbiology (D. B. Nedwell and C. M. Brown, eds.), Academic Press, New York, pp. 147–170.Google Scholar
  18. Bender, M. L., and Heggie, D. T., 1984, Fate of organic carbon reaching the deep sea floor: A status report, Geochim. Cosmochim. Acta 48:977–986.CrossRefGoogle Scholar
  19. Bender, M. L., Fanning, K. A., Froelich, P. N., Heath, G. R., and Maynard, V., 1977, Interstitial nitrate profiles and oxidation of sedimentary organic matter in the Eastern Equatorial Atlantic, Science 198:605–609.CrossRefGoogle Scholar
  20. Benner, R., Maccubbin, A. E., and Hodson, R. E., 1984, Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulosic and synthetic lignin by sediment microflora, Appl. Environ. Microbiol. 47:998–1004.Google Scholar
  21. Benner, R., Moran, M. A., and Hodson, R. E., 1986, Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: Relative contributions of procaryotes and eucaryotes, Limnol. Oceanogr. 31:89–100.CrossRefGoogle Scholar
  22. Benner, R., Lay, J., K’nees, E., and Hodson, R. E., 1988, Carbon conversion efficiency for bacterial growth on lignocellulose: Implications for detritus-based food webs, Limnol. Oceanogr. 33:1514–1526.CrossRefGoogle Scholar
  23. Berelson, W. M., and Hammond, D. E., 1986, The calibration of a new free vehicle benthic flux chamber for use in the deep sea, Deep-Sea Res. 33:1439–1454.CrossRefGoogle Scholar
  24. Berner, R. A., 1974, Kinetic models for the early diagenesis of nitrogen, sulfur, phosphorus and silicon in anoxic marine sediments, in: The Sea, Vol. 5 (E. D. Goldberg, ed.), Wiley-Interscience, New York, pp. 427–449.Google Scholar
  25. Berner, R. A., 1977, Stoichiometric models for nutrient regeneration in anoxic sediments, Limnol. Oceanogr. 22:781–786.CrossRefGoogle Scholar
  26. Berner, R. A., 1980, Early Diagenesis: A Theoretical Approach, Princeton University Press, Princeton, New Jersey.Google Scholar
  27. Billen, G., 1982, Modelling the processes of organic matter degradation and nutrients in sedimentary systems, in: Sediment Microbiology (D. B. Nedwell and C. M. Brown, eds.), Academic Press, New York, pp. 15–52.Google Scholar
  28. Bird, D. F., and Duarte, C. M., 1989, Bacteria-organic matter relationship in sediments: A case of spurious correlation, Can. J. Fish. Aquat. Sci. 46:904–908.CrossRefGoogle Scholar
  29. Biscaye, P., Anderson, R. F., and Deck, B. L., 1988, Fluxes of particles and constituents to the eastern United States continental slope and rise: SEEP I, Cont. Shelf Res. 8:855–904.CrossRefGoogle Scholar
  30. Boto, K. G., Alongi, D. M., and Nott, A. L. J., 1989, Dissolved organic carbon-bacteria interactions at sediment-water interface in a tropical mangrove system, Mar. Ecol. Prog. Ser. 51:243–251.CrossRefGoogle Scholar
  31. Boyer, J., 1986, End products of anaerobic chitin degradation by salt marsh bacteria as substrates for dissimilatory sulfate reduction and methanogenesis, Appl. Environ. Microbiol. 52:1415–1418.Google Scholar
  32. Breznak, J. A., 1982, Intestinal microflora of termites and other xylophagous insects, Annu. Rev. Microbiol. 36:323–343.CrossRefGoogle Scholar
  33. Butler, J. H. A., and Buckerfield, J. C., 1979, Digestion of lignin by termites, Soil Biol. Biochem. 11:507–513.CrossRefGoogle Scholar
  34. Butman, C. A., 1986, Sediment trap biases in turbulent flow: Results from a laboratory flume study, J. Mar. Res. 44:645–693.CrossRefGoogle Scholar
  35. Butman, C. A., Grant, W. D., and Stolzenbach, K. D., 1986, Predictions of sediment trap biases in turbulent flow: A theoretical analysis based on observations from the literature, J. Mar. Res. 44:601–644.CrossRefGoogle Scholar
  36. Cahet, G., and Sibuet, M., 1986, Activité biologique en domaine profond: Transformations biochimiques in situ de composés organiques marqués au carbone-14 à l’interface eau-sediment par 2000 m de profondeur dans le golfe de Gascogne, Mar. Biol. 90:307–315.CrossRefGoogle Scholar
  37. Canfield, D. E., 1989, Sulfate reduction and oxic respiration in marine sediments: Implications for organic carbon preservation in euxinic environments, Deep-Sea Res. 36:121–138.CrossRefGoogle Scholar
  38. Capone, D. G., and Kiene, R. P., 1988, Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon catabolism, Limnol. Oceanogr. 33:725–749.CrossRefGoogle Scholar
  39. Certes, A., 1884, Sur la culture, à l’abri des germes atmosphériques, des eaux et des sédiments rapportés par les expéditions du Travailleur et du Talisman, 1882–1883, C. R. Acad. Sci. 98:690–693.Google Scholar
  40. Cho, B. C., and Azam, F., 1988, Major role of bacteria in biogeochemical fluxes in the ocean’s interior, Nature 332:441–443.CrossRefGoogle Scholar
  41. Christensen, J. P., and Rowe, G. T., 1984, Nitrification and oxygen consumption in Northwest Atlantic deep-sea sediments, J. Mar. Res. 42:1099–1116.CrossRefGoogle Scholar
  42. Colberg, P. J., and Young, L. Y., 1982, Biodegradation of lignin-derived molecules under anaerobic conditions, Can. J. Microbiol. 28:886–889.CrossRefGoogle Scholar
  43. Cole, J. J., Honjo, S., and Erez, J., 1987, Benthic decomposition of organic matter at a deep-water site in the Panama Basin, Nature 327:703–704.CrossRefGoogle Scholar
  44. Costerton, J. W., Cheng, K.-J., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupta, M., and Marrie, T. J., 1987, Bacterial biofilms in nature and disease, Annu. Rev. Microbiol. 41:435–464.CrossRefGoogle Scholar
  45. Cowen, J. P., 1989, Positive pressure effect on manganese binding by bacteria in deep-sea hydrothermal plumes, Appl. Environ. Microbiol. 55:764–766.Google Scholar
  46. Craven, D. B., and Karl, D. A., 1984, Microbial RNA and DNA synthesis in marine sediments, Mar. Biol. 83:129–139.CrossRefGoogle Scholar
  47. Craven, D. B., Jahnke, R. A., and Carlucci, A. F., 1986, Fine-scale vertical distributions of microbial biomass and activity in California Borderland sediments, Deep-Sea Res. 33:379–390.CrossRefGoogle Scholar
  48. Crawford, R. L., 1981, Lignin Biodegradation and Transformation, Wiley-Interscience, New York.Google Scholar
  49. Dale, N. G., 1974, Bacteria in intertidal sediments: Factors related to their distribution, Limnol. Oceanogr. 19:509–518.CrossRefGoogle Scholar
  50. Danulat, E., 1986, Role of bacteria with regard to chitin degradation in the digestive tract of the cod Gadus morhua, Mar. Biol. 90:335–343.CrossRefGoogle Scholar
  51. deAngelis, M., Baross, J. A., and Lilley, M. D., 1991, Enhanced microbial methane oxidation in water from a deep-sea hydrothermal vent field at simulated in situ hydrostatic pressures, Limnol. Oceanogr. 36:565–569.CrossRefGoogle Scholar
  52. Deming, J. W., 1985, Bacterial growth in deep-sea sediment trap and boxcore samples, Mar. Ecol. Prog. Ser. 25:305–312.CrossRefGoogle Scholar
  53. Deming, J. W., 1986, Ecological strategies of barophilic bacteria in the deep ocean, Microbiol. Sci. 3:205–211.Google Scholar
  54. Deming, J. W., and Colwell, R. R., 1982, Barophilic bacteria associated with digestive tracts of abyssal holothurians, Appl. Environ. Microbiol. 44:1222–1230.Google Scholar
  55. Deming, J. W., and Colwell, R. R., 1985, Observations of barophilic microbial activity in samples of sediments and intercepted particulates from the Demerara Abyssal Plain, Appl. Environ. Microbiol. 50:1002–1006.Google Scholar
  56. Deming, J. W., and Yager, P. L., 1992, Natural bacterial assemblages in deep-sea sediments: Towards a global view, in: Deep-Sea Food Chains—Their Relation to the Global Carbon Cycles (G. T. Rowe and V. Pariente, eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 11–27.CrossRefGoogle Scholar
  57. Deming, J. W., Tabor, P. S., and Colwell, R. R., 1981, Barophilic growth of bacteria from intestinal tracts of deep-sea invertebrates, Microb. Ecol. 7:85–94.CrossRefGoogle Scholar
  58. Deming, J. W., Hada, H., Colwell, R. R., Luehrsen, K. R., and Fox, G. E., 1984, The ribonucleotide sequence of 5S rRNA from two strains of deep-sea barophilic bacteria, J. Gen. Microbiol. 130:1911–1920.Google Scholar
  59. Deming, J. W., Somers, L. K., Straube, W. L., Swartz, D. G., and MacDonell, M. T., 1988, Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov., Syst. Appl. Microbiol. 10:152–160.CrossRefGoogle Scholar
  60. Desbruyeres, D., Deming, J. W., Dinet, A., and Khripounoff, A., 1985, Réactions de l’écosystème benthique profond aux perturbations: Nouveaux résultats expérimentaux, in: Peuplements Profonds du Golfe de Gascogne (L. Laubier and C. Monniot, eds.), IFREMER (Institute Français de Recherche pour l’Exploitation de la Mer), Brest, France, pp. 193–208.Google Scholar
  61. Deuser, W. G., and Ross, E. H., 1980, Seasonal change in the flux of organic carbon to the deep Sargasso Sea, Nature 283:364–365.CrossRefGoogle Scholar
  62. Deuser, W. G., Ross, E. H., and Anderson, R. F., 1981, Seasonality in the supply of sediment to the deep Sargasso Sea and implications for the rapid transfer of matter to the deep ocean, Deep-Sea Res. 28A:495–505.CrossRefGoogle Scholar
  63. Devol, A. H., 1987, Verification of flux measurements made with in situ benthic chambers, Deep-Sea Res. 34:1007–1026.CrossRefGoogle Scholar
  64. Dwyer, D. F., Weeg-Aerssens, E., Shelton, D. R., and Tiedje, J. M., 1988, Bioenergetic conditions of butyrate metabolism by a syntrophic, anaerobic bacterium in co-culture with hydrogen-oxidizing methanogenic and sulfidogenic bacteria, Appl. Environ. Microbiol. 54:1354–1359.Google Scholar
  65. Dye, A. H., 1983, A method for the quantitative estimation of bacteria from mangrove sediments, Estuarine Coastal Shelf Sci. 17:207–212.CrossRefGoogle Scholar
  66. Ellery, W. N., and Schleyer, M. H., 1984, Comparison of homogenization and ultrasonication as techniques in extracting attached sedimentary bacteria, Mar. Ecol. Prog. Ser. 15:247–250.CrossRefGoogle Scholar
  67. Emerson, S. Jahnke, R., Bender, M., Froelich, P., Klinkhammer, G., Bowser, C., and Setlock, G., 1980, Early diagenesis in sediments from the eastern equatorial Pacific: 1. Pore water nutrient and carbonate results, Earth Planet. Sci. Lett. 49:57–80.CrossRefGoogle Scholar
  68. Emerson, S., Reimers, C., Fischer, K., and Heggie, D., 1985, Organic carbon dynamics and preservation in deep-sea sediments, Deep-Sea Res. 32:1–22.CrossRefGoogle Scholar
  69. Emerson, S., Stump, C., Grootes, P. M., Stuiver, M., Farwell, G. W., and Schmidt, F. H., 1987, Estimates of degradable organic carbon in deep-sea surface sediments from 14C concentrations, Nature 329:51–53.CrossRefGoogle Scholar
  70. Eppley, R. W., and Peterson, B. J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature 282:677–680.CrossRefGoogle Scholar
  71. Fallon, R. D., Newell, S. Y., and Hopkinson, C. S., 1983, Bacterial production in marine sediments: Will cell-specific measures agree with whole-system metabolism?, Mar. Ecol. Prog. Ser. 11:119–127.CrossRefGoogle Scholar
  72. Fenchel, T. M., 1967, The ecology of marine microbenthos I. The quantitative importance of ciliates as compared with metazoans in various types of sediments, Ophelia 4:121–137.CrossRefGoogle Scholar
  73. Fenchel, T. M., 1969, The ecology of marine microbenthos IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa, Ophelia 6:1–182.CrossRefGoogle Scholar
  74. Fenchel, T. M., 1987, Ecology of Protozoa, The Biology of Free-Living Phagotrophic Protists, Brock-Springer Series in Contemporary BioScience, Science Tech. Publishers, Madison, Wisconsin.CrossRefGoogle Scholar
  75. Fenchel, T. M., and Jorgensen, B. B., 1977, Detritus food chains of aquatic ecosystems: The role of bacteria, in: Advances in Microbial Ecology, Vol. 1 (M. Alexander, ed.), Plenum Press, New York, pp. 1–58.CrossRefGoogle Scholar
  76. Findlay, R. H., Pollard, P. C., Moriarty, D. J. W., and White, D. C., 1985, Quantitative determination of microbial activity and community nutritional status in estuarine sediments: Evidence for a disturbance artifact, Can. J. Microbiol. 31:493–498.CrossRefGoogle Scholar
  77. Fong, J. B., and Mann, K. H., 1980, Role of gut flora in the transfer of amino acids through a marine food chain, Can. J. Fish. Aquat. Sci. 37:88–96.CrossRefGoogle Scholar
  78. Foulds, J. B., and Mann, K. H., 1978, Cellulose digestion in Mysis stenolepsis and its ecological implications, Limnol. Oceanogr. 23:760–766.CrossRefGoogle Scholar
  79. Friesan, J. A., Mann, H. K., and Novitsky, K. H., 1986, Mysis digests cellulose in the absence of a gut microflora, Can. J. Zool. 64:431–441.CrossRefGoogle Scholar
  80. Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V., 1979, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis, Geochim. Cosmochim. Acta 43:1075–1090.CrossRefGoogle Scholar
  81. Gerritse, J., Schut, F., and Gottschal, J. C., 1990, Mixed chemostat cultures of obligately aerobic and fermentative or methanogenic bacteria grown under oxygen-limiting conditions, FEMS Microbiol. Lett. 66:87–94.CrossRefGoogle Scholar
  82. Goodrich, T. D., and Morita, R. Y., 1977, Bacterial chitinase in the stomachs of marine fishes from Yaquina Bay, Oregon, USA, Mar. Biol. 41:355–360.CrossRefGoogle Scholar
  83. Graf, G., 1986, Winter inversion of biomass and activity profile in a marine sediment, Mar. Ecol. Prog. Ser. 33:231–235.CrossRefGoogle Scholar
  84. Graf, G., 1989, Benthic-pelagic coupling in a deep-sea benthic community, Nature 341:437–439.CrossRefGoogle Scholar
  85. Grundmanis, V., and Murray, J. W., 1982, Aerobic respiration in pelagic marine sediments, Geochim. Cosmochim. Acta 46:1101–1120.CrossRefGoogle Scholar
  86. Gundersen, J. K., and Jorgensen, B. B., 1990, Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor, Nature 345:604–607.CrossRefGoogle Scholar
  87. Haedrich, R. L., and Rowe, G. T., 1978, Megafaunal biomass in the deep sea, Nature 269:141–142.CrossRefGoogle Scholar
  88. Hansen, J. A., Alongi, D. M., Moriarty, D. J. W., and Pollard, P. C., 1987, The dynamics of benthic microbial communities at Davies Reef, central Great Barrier Reef, Coral Beefs 6:63–70.CrossRefGoogle Scholar
  89. Harvey, H. R., Richardson, M. D., and Patton, J. S., 1984, Lipid composition and vertical distribution of bacteria in anaerobic sediments of the Venezuela Basin, Deep-Sea Res. 31:403–413.CrossRefGoogle Scholar
  90. Henrichs, S. M., and Doyle, A. P., 1986, Decomposition of 14C-labeled organic substances in marine sediments, Limnol. Oceanogr. 31:765–778.CrossRefGoogle Scholar
  91. Henrichs, S. M., and Reeburgh, W. S., 1987, Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy, Geomicrobiol. J. 5:191–237.CrossRefGoogle Scholar
  92. Herwig, R. P., and Staley, J. T., 1986, Anaerobic bacteria from the digestive tract of North Atlantic fin whales (Balaenoptera physalus), FEMS Microbiol. Lett. 38:361–371.CrossRefGoogle Scholar
  93. Herwig, R. P., Staley, J. T., Nerini, M. K., and Braham, H. W., 1984, Baleen whales: Preliminary evidence for forestomach microbial fermentation, Appl. Environ. Microbiol. 47:421–423.Google Scholar
  94. Hessler, R. R., Ingram, C. L., Yayanos, A. A., and Burnett, B. R., 1978, Scavenging amphipods from the floor of the Philippine Trench, Deep-Sea Res. 25:1029–1048.CrossRefGoogle Scholar
  95. Hinga, K., Sieburth, J. McN., and Heath, G. R., 1979, The supply and use of organic material at the deep sea floor, J. Mar. Res. 37:557–579.Google Scholar
  96. Honjo, S., 1978, Sedimentation of materials in the Sargasso Sea at 5,367 m deep station, J. Mar. Res. 36:469–492.Google Scholar
  97. Hungate, R. E., 1975, The rumen microbial ecosystem, Annu. Rev. Ecol. Syst. 6:39–66.CrossRefGoogle Scholar
  98. Isao, K., Hara, S., Terauchi, K., and Kogure, K., 1990, Role of submicrometre particles in the ocean, Nature 345:242–244.CrossRefGoogle Scholar
  99. Ittekkot, V., Deuser, W. G., and Degens, E. T., 1984, Seasonality in the fluxes of sugars, amino acids, and amino sugars to the deep ocean: Panama Basin, Deep-Sea Res. 31:1057–1069.CrossRefGoogle Scholar
  100. Jackson, G. A., 1990, A model of the formation of marine algal flocs by physical coagulation processes, Deep-Sea Res. 37:1197–1211.CrossRefGoogle Scholar
  101. Jahnke, R., 1985, A model of microenvironments in deep-sea sediments: Formation and effects on porewater profiles, Limnol. Oceanogr. 30:956–965.Google Scholar
  102. Jahnke, R. A., and Jackson, G. A., 1987, Role of sea floor organisms in oxygen consumption in the deep North Pacific Ocean, Nature 329:621–623.CrossRefGoogle Scholar
  103. Jahnke, R., Emerson, S., and Murray, J. W., 1982, A model of oxygen reduction, denitrification and organic matter mineralization in marine sediments, Limnol. Oceanogr. 27:610–623.CrossRefGoogle Scholar
  104. Jahnke, R., Emerson, S. R., Cochran, J. K., and Hirshberg, D. J., 1986, Fine scale distributions of porosity and particulate excess 210Pb, organic carbon and CaCO3 in surface sediments of the deep equatorial Pacific, Earth Planet. Sci. Lett. 77:59–69.CrossRefGoogle Scholar
  105. Jahnke, R., A., Reimers, C. E., and Craven, D. B., 1990, Intensification of recycling of organic matter at the sea floor near ocean margins, Nature 348:50–54.CrossRefGoogle Scholar
  106. Jannasch, H. W., 1979, Microbial turnover of organic matter in the deep sea, BioScience 29:228–232.CrossRefGoogle Scholar
  107. Jannasch, H. W., and Wirsen, C. O., 1973, Deep-sea microorganisms: In situ response to nutrient enrichment, Science 180:641–643.CrossRefGoogle Scholar
  108. Jannasch, H. W., and Wirsen, C. O., 1983, Microbiology of the deep sea, in: The Sea, Vol. 8, Deep-Sea Biology (G. T. Rowe, ed.), John Wiley & Sons, New York, pp. 231–259.Google Scholar
  109. Jannasch, H. W., and Wirsen, C. O., 1984, Variability of pressure adaptation in deep sea bacteria, Arch. Microbiol. 139:281–288.CrossRefGoogle Scholar
  110. Jorgensen, B. B., 1977, The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark), Limnol. Oceanogr. 5:814–832.CrossRefGoogle Scholar
  111. Jorgensen, B. B., 1982, Mineralization of organic matter in the seabed—the role of sulfate reduction, Nature 296:643–645.CrossRefGoogle Scholar
  112. Jumars, P. A., Penry, D. L., Baross, J. A., Perry, M. J., and Frost, B. W., 1989, Closing the microbial loop: Dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals, Deep-Sea Res. 36:483–495.CrossRefGoogle Scholar
  113. Jumars, P. A., Mayer, L. M., Deming, J. W., Baross, J. A., and Wheatcroft, R. A., 1990, Deep-sea deposit-feeding strategies suggested by environmental and feeding constraints, Philos. Trans. R. Soc. London Ser. A 331:85–101.CrossRefGoogle Scholar
  114. Karl, D. M., 1986, Determination of in situ microbial biomass, viability, metabolism, and growth, in: Bacteria in Nature, Vol. 2, Methods and Special Applications in Bacterial Ecology (J. S. Poindexter and E. R. Leadbetter, eds.), Plenum Press, New York, pp. 85–176.Google Scholar
  115. Karl, D. M., and Novitsky, J. A., 1988, Dynamics of microbial growth in surface layers of a coastal marine sediment ecosystem, Mar. Ecol. Prog. Ser. 50:169–176.CrossRefGoogle Scholar
  116. Karl, D. M., Jones, D. R., Novitsky, J. A., Winn, C. D., and Bossard, P., 1987, Specific growth rates of natural microbial communities measured by adenine nucleotide pool turnover, J. Microbiol. Methods 6:221–235.CrossRefGoogle Scholar
  117. Karl, D. M., Knauer, G. A., and Martin, J. H., 1988, Downward flux of particulate organic matter in the ocean: A particle decomposition paradox, Nature 332:438–441.CrossRefGoogle Scholar
  118. Kemp, P. F., 1987, Potential impact on bacteria of grazing by a macrofaunal deposit-feeder, and the fate of bacterial production, Mar. Ecol. Prog. Ser. 36:151–161.CrossRefGoogle Scholar
  119. Kemp, P. F., 1988, Bacterivory by benthic ciliates: Significance as a carbon source and impact on sediment bacteria, Mar. Ecol. Prog. Ser. 49:163–169.CrossRefGoogle Scholar
  120. Kemp, P. F., 1990, The fate of benthic bacterial production, Rev. Aquat. Sci. 2:109–123.Google Scholar
  121. Khripounoff, A., and Rowe, G. T., 1985, Les apports organiques et leur transformation en milieu abyssal à l’interface eau-sédiment dans l’ocean Atlantique tropical, Oceanol. Acta 8:293–301.Google Scholar
  122. King, G. M., 1986, Characterization of β-glucosidase activity in intertidal marine sediments, Appl. Environ. Microbiol. 51:373–380.Google Scholar
  123. Lee, C., 1992, Controls on organic carbon preservation: The use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems, Geochim. Cosmochim. Acta 56:3323–3335.CrossRefGoogle Scholar
  124. Lilley, M. D., Baross, J. A., and Gordon, L. I., 1982, Dissolved hydrogen and methane in Saanich Inlet, British Columbia, Deep-Sea Res. 29:1471–1487.CrossRefGoogle Scholar
  125. Ljungdahl, L. G., 1986, The autotrophic pathway of acetate synthesis in acetogenic bacteria, Annu. Rev. Microbiol. 40:415–450.CrossRefGoogle Scholar
  126. Lochte, K., 1992, Bacterial standing stock and consumption of organic carbon in the benthic boundary layer of the abyssal North Atlantic, in: Deep-Sea Food Chains—Their Relation to the Global Carbon Cycles (G. T. Rowe and V. Pariente, eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 1–10.CrossRefGoogle Scholar
  127. Lochte, K., and Turley, C. M., 1988, Bacteria and cyanobacteria associated with phytodetritus in the deep sea, Nature 333:67–69.CrossRefGoogle Scholar
  128. Lovley, D. R., and Phillips, E. J. P., 1988, Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese, Appl. Environ. Microbiol. 54:1472–1480.Google Scholar
  129. Lovley, D. R., Phillips, E. J. P., and Lonergan, D. J., 1989a, Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens, Appl. Environ. Microbiol. 55:700–706.Google Scholar
  130. Lovley, D. R., Baedecker, M. J., Lonergan, D. J., Cozzarelli, I. M., Phillips, E. J. P., and Siegel, D. I., 1989b, Oxidation of aromatic contaminants coupled to microbial iron reduction, Nature 339:297–299.CrossRefGoogle Scholar
  131. Mann, K. H., 1988, Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems, Limnol. Oceanogr. 33:910–930.CrossRefGoogle Scholar
  132. Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. M., 1987, VERTEX: Carbon cycling in the northeast Pacific, Deep-Sea Res. 34:267–285.CrossRefGoogle Scholar
  133. Martin, M. M., Martin, J. S., Kukor, J. J., and Merritt, R. W., 1980, The digestion of protein and carbohydrate by the stream detritivore, Tipula abdominalis (Diptera, Tipulidae), Oecologia 46:360–364.Google Scholar
  134. Mayer, L. M., 1989, Extracellular proteolytic enzyme activity in sediments of an intertidal mudflat, Limnol. Oceanogr. 34:973–981.CrossRefGoogle Scholar
  135. Mayer, L. M., Macko, S. A., and Cammen, L., 1988, Provenance, concentrations and nature of sedimentary organic nitrogen in the Gulf of Maine, Mar. Chem. 25:291–304.CrossRefGoogle Scholar
  136. McCorkle, D. C., and Emerson, S. R., 1988, The relationship between pore water carbon isotopic composition and bottom water oxygen concentration, Geochim. Cosmochim. Acta 52:1169–1178.CrossRefGoogle Scholar
  137. McCorkle, D. C., Emerson, S. R., and Quay, P. D., 1985, Stable carbon isotopes in marine porewaters, Earth Planet. Sci. Lett. 74:13–26.CrossRefGoogle Scholar
  138. Meyer-Reil, L.-A., 1984, Bacterial biomass and heterotrophic, activity in sediments and overlying waters, in: Heterotrophic Activity in the Sea (J. E. Hobbie and P. J. leB. Williams, eds.), Plenum Press, New York, pp. 523–546.CrossRefGoogle Scholar
  139. Meyer-Reil, L.-A., 1986, Measurement of hydrolytic activity and incorporation of dissolved organic substrates by microorganisms in marine sediments, Mar. Ecol. Prog. Ser. 31:143–149.CrossRefGoogle Scholar
  140. Meyer-Reil, L.-A., 1987a, Seasonal and spatial distribution of extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments, Appl. Environ. Microbiol. 53:1748–1755.Google Scholar
  141. Meyer-Reil, L.-A., 1987b, Biomass and activity of benthic bacteria, in: Lecture Notes on Coastal and Estuarine Studies, Volume XIII (M. J. Bowman, R. T. Barber, C. N. K. Mooers, and J. A. Raven, eds.), Springer-Verlag, New York, pp. 93–110.Google Scholar
  142. Meyer-Reil, L.-A., Bolter, M., Dawson, R., Liebezeit, G., Szwerinski, H., and Wolter, K., 1980, Interrelationships between microbiological and chemical parameters of sandy beach sediments, a summer aspect, Appl. Environ. Microbiol. 39:797–802.Google Scholar
  143. Michaels, A. F., and Silver, M. W., 1988, Primary production, sinking fluxes and the microbial food web, Deep-Sea Res. 35:473–490.CrossRefGoogle Scholar
  144. Miller, D. C., 1989, Abrasion effects on microbes in sandy sediments, Mar. Ecol. Prog. Ser. 55:73–82.CrossRefGoogle Scholar
  145. Montagna, P. A., Bauer, J. E., Hardin, D., and Spies, R. B., 1989, Vertical distribution of microbial and meiofaunal populations in sediments of a natural coastal hydrocarbon seep, J. Mar. Res. 47:657–680.CrossRefGoogle Scholar
  146. Moriarty, D. J. W., and Pollard, P. C., 1981, DNA synthesis as a measure of bacterial productivity in seagrass sediments, Mar. Ecol. Prog. Ser. 5:151–156.CrossRefGoogle Scholar
  147. Moriarty, D. J. W., and Pollard, P. C., 1982, Diel variation of bacterial productivity in seagrass (Zostera capricorni) beds measured by rate of thymidine incorporation into DNA, Mar. Biol. 72:165–173.CrossRefGoogle Scholar
  148. Moriarty, D. J. W., Pollard, P. C., Hunt, W. G., Moriarty, C. M., and Wassenberg, T. J., 1985, Productivity of bacteria and microalgae and the effect of grazing by holothurians in sediments on a coral reef flat, Mar. Biol. 85:293–300.CrossRefGoogle Scholar
  149. Morrison, S. J., and White, D. C., 1980, Effects of grazing by estuarine gammaridean amphipods on the microbiota of allochthonous detritus, Appl. Environ. Microbiol. 40:659–671.Google Scholar
  150. Muller, P. J., and Suess, E. 1979, Productivity, sedimentation rate, and sedimentary organic matter in the oceans—I. Organic carbon preservation, Deep-Sea Res. 26:1347–1362.CrossRefGoogle Scholar
  151. Newell, S. Y., and Fallon, R. D., 1982, Bacterial productivity in the water column and sediments of the Georgia (USA) coastal zone: Estimates via direct counting and parallel measurement of thymidine incorporation, Microb. Ecol. 8:33–46.CrossRefGoogle Scholar
  152. Novitsky, J. A., 1983a, Heterotrophic activity throughout a vertical profile of seawater and sediment in Halifax Harbor, Canada, Appl. Environ. Microbiol. 45:1753–1760.Google Scholar
  153. Novitsky, J. A., 1983b, Microbial activity at the sediment-water interface in Halifax Harbor, Canada, Appl. Environ. Microbiol. 45:1761–1766.Google Scholar
  154. Novitsky, J. A., 1987, Microbial growth rates and biomass production in a marine sediment: Evidence for a very active but mostly nongrowing community, Appl. Environ. Microbiol. 53:2368–2372.Google Scholar
  155. Oremland, R. S., 1988, The biogeochemistry of methanogenic bacteria, in: The Biology of Anaerobic Microorganisms (A. Zehnder, ed.), John Wiley & Sons, New York, pp. 405–447.Google Scholar
  156. Pace, M. L., Glasser, J. E., and Pomeroy, L. R., 1984, A simulation analysis of continental shelf food webs, Mar. Biol. 82:47–63.CrossRefGoogle Scholar
  157. Paerl, H. W., and Carlton, R. G., 1988, Control of nitrogen fixation by oxygen depletion in surface-associated microzones, Nature 332:260–262.CrossRefGoogle Scholar
  158. Plante, C. J., and Jumars, P. A., 1992, The microbial environment of marine deposit-feeder guts characterized via microelectrodes, Microb. Ecol. 23:257–277.CrossRefGoogle Scholar
  159. Plante, C. J., Jumars, P A., and Baross, J. A., 1989, Rapid bacterial growth in the hindgut of a marine deposit feeder, Microb. Ecol. 18:29–44.CrossRefGoogle Scholar
  160. Plante, C. J., Jumars, P. A., and Baross, J. A., 1990, Digestive associations between marine detritivores and bacteria, Annu. Rev. Ecol. Syst. 21:93–127.CrossRefGoogle Scholar
  161. Pomeroy, L. R., 1974, The ocean’s food web, a changing paradigm, BioScience 24:499–504.CrossRefGoogle Scholar
  162. Pomeroy, L. R., 1979, Secondary production mechanisms of continental shelf communities, in: Ecological Processes in Coastal and Marine Systems (R. J. Livingston, ed.), Plenum Press, New York, pp. 163–186.CrossRefGoogle Scholar
  163. Pomeroy, L. R., and Deibel, D., 1986, Temperature regulation of bacterial activity during the spring bloom in Newfoundland coastal waters, Science 18:359–361.CrossRefGoogle Scholar
  164. Prim, P., and Lawrence, J. M., 1975, Utilization of marine plants and their constituents by bacteria isolated from the gut of echinoids (Echinodermata), Mar. Biol. 33:167–173.CrossRefGoogle Scholar
  165. Reeburgh, W. S., 1976, Methane consumption in Cariaco Trench waters and sediments, Earth Planet. Sci. Lett. 28:337–344.CrossRefGoogle Scholar
  166. Reeburgh, W. S., 1983, Rates of biogeochemical processes in anoxic sediments, Annu. Rev. Earth Planet. Sci. 11:269–298.CrossRefGoogle Scholar
  167. Reeburgh, W. S., 1989, Interaction of sulfur and carbon cycles in marine sediments, in: Evolution of the Global Biogeochemical Sulfur Cycle SCOPE 39 (P. Brimblecombe and A. Yu Lein, eds.), John Wiley & Sons, New York, pp. 125–159.Google Scholar
  168. Reeburgh, W. S., Ward, B. B., Whalen, S. C., Sandbeck, K. A., Kilpatrick, K. A., and Kerkhof, L. J., 1991, Black Sea methane geochemistry, Deep-Sea Res. 38:S1189–S1210.CrossRefGoogle Scholar
  169. Reimers, C. E., 1987, An in situ microprofiling instrument for measuring interfacial pore water gradients: Methods and oxygen profiles from the North Pacific Ocean, Deep-Sea Res. 34:2019–2035.CrossRefGoogle Scholar
  170. Reimers, C. E., and Smith, K. L., Jr., 1986, Reconciling measured and predicted fluxes of oxygen across the deep-sea sediment-water interface, Limnol. Oceanogr. 31:305–318.CrossRefGoogle Scholar
  171. Reimers, C. E., Kalhorn, S., Emerson, S. R., and Nealson, K. H., 1984, Oxygen consumption rates in pelagic sediments from the Central Pacific: First estimates from microelectrode profiles, Geochim. Cosmochim. Acta 48:903–910.CrossRefGoogle Scholar
  172. Reimers, C. E., Fischer, K. M., Merewether, R., Smith, K. L., Jr., and Jahnke, R. J., 1986, Oxygen microprofiles measured in situ in deep ocean sediments, Nature 320:741–744.CrossRefGoogle Scholar
  173. Revsbech, N. P., and Jorgensen, B. B., 1986, Microelectrodes: Their use in microbial ecology, in: Advances in Microbial Ecology, Vol. 9 (K. C. Marshall, ed.), Plenum Press, New York, pp. 293–352.Google Scholar
  174. Revsbech, N. P., Jorgensen, B. B., and Blackburn, T. H., 1979, Oxygen in the sea bottom measured with a microelectrode, Science 207:1355–1356.Google Scholar
  175. Rigler, F. H., 1982, Recognition of the possible: An advantage of empiricism in ecology, Can. J. Fish. Aquat. Sci. 39:1323–1331.CrossRefGoogle Scholar
  176. Rowe, G. T., 1981, The benthic processes of coastal upwelling ecosystems, in: Coastal Upwelling (F. A. Richards, ed.), American Geophysical Union, Washington, D.C., pp. 464–471.CrossRefGoogle Scholar
  177. Rowe, G. T., 1983, Biomass and production of the deep-sea macro-benthos, in: The Sea, Vol. 8, Deep-Sea Biology (G. T. Rowe, ed.), Wiley-Interscience, New York, pp. 97–122.Google Scholar
  178. Rowe, G. T., and Deming, J. W., 1985, The role of bacteria in the turnover of organic carbon in deep-sea sediments, J. Mar. Res. 43:925–950.CrossRefGoogle Scholar
  179. Rowe, G. T., and Gardner, W., 1979, Sedimentation rates in the slope water of the northwest Atlantic Ocean measured directly with sediment traps, J. Mar. Res. 37:581–600.Google Scholar
  180. Rowe, G. T., Clifford, C. H., Smith, K. L., and Hamilton, P. L., 1975, Benthic nutrient regeneration and its coupling to primary productivity in coastal waters, Nature 255:215–217.CrossRefGoogle Scholar
  181. Rowe, G. T., Smith, S., Falkowski, P. G., Whitledge, T. E., Theroux, R., Phoel, W., and Ducklow, H., 1986, Do continental shelves export organic matter?, Nature 324:559–561.CrossRefGoogle Scholar
  182. Rowe, G. T., Theroux, R., Phoel, W., Quinby, H., Wilke, R., Koschoreck, D., Whitledge, T. E., Falkowski, P. G., and Fray, C., 1988, Benthic carbon budgets for the continental shelf south of New England, Cont. Shelf Res. 8:511–527.CrossRefGoogle Scholar
  183. Rowe, G. T., Sibuet, M., Deming, J. W., Khripounoff, A., and Tietjen, J., 1990, Organic carbon residence time in the deep-sea benthos, Prog. Oceanogr. 24:141–160.CrossRefGoogle Scholar
  184. Rowe, G. T., Sibuet, M., Deming, J. W., Khripounoff, A., Tietjen, J., Macko, S., and Theroux, R., 1991, “Total” sediment biomass and preliminary estimates of organic carbon residence time in deep-sea benthos, Mar. Ecol. Prog. Ser. 79:99–114.CrossRefGoogle Scholar
  185. Rublee, P. A., 1982, Bacterial and microbial distribution in estuarine sediments, in: Estuarine Comparisons (V. S. Kennedy, ed.), Academic Press, New York, pp. 159–182.Google Scholar
  186. Sayles, F. L., and Curry, W. B., 1988, Delta 13C, TCO2, and the metabolism of organic carbon in deep sea sediments, Geochim. Cosmochim. Acta 52:2963–2978.CrossRefGoogle Scholar
  187. Sieburth, J. M., 1987, Contrary habitats for redox-specific processes: Methanogenesis in oxic waters and oxidation in anoxic waters, in: Microbes in the Sea (M. A. Sleigh, ed.), Ellis Horwood, Chichester, and John Wiley & Sons, New York, pp. 11–38.Google Scholar
  188. Sinsabaugh, R. L., Linkins, A. E., and Benfield, E. F., 1985, Cellulose digestion and assimilation by three leaf-shredding aquatic insects, Ecology 66:1464–1471.CrossRefGoogle Scholar
  189. Smetacek, V. S., 1985, Role of sinking in diatom life-history cycles: Ecological, evolutionary and geological significance, Mar. Biol. 84:239–251.CrossRefGoogle Scholar
  190. Smith, D. C., Simon, M., Alldredge, A. L., and Azam, F., 1992, Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution, Nature 359:139–142.CrossRefGoogle Scholar
  191. Smith, K. L., Jr., 1987, Food energy supply and demand: A discrepancy between particulate organic carbon flux and sediment community oxygen consumption in the deep sea, Limnol. Oceanogr. 32:201–220.CrossRefGoogle Scholar
  192. Smith, K. L., Jr., and Baldwin, R. J., 1984, Seasonal fluctuations in deep-sea sediment community oxygen consumption: Central and eastern Pacific, Nature 307:624–626.CrossRefGoogle Scholar
  193. Smith, K. L., Jr., and Teal, J. M., 1973, Deep-sea benthic community respiration—an in situ study to 1850 meters, Science 179:282–283.CrossRefGoogle Scholar
  194. Smith, K. L., Jr., Clifford, C., Eliason, A., Waiden, B., Rowe, G., and Teal, J. 1976, A free vehicle for measuring benthic community respiration, Limnol. Oceanogr. 21:164–170.CrossRefGoogle Scholar
  195. Smith, K. L., Jr., White, G. A., and Laver, M. B., 1979, Oxygen uptake and nutrient exchange of sediments measured in situ using a free vehicle grab respirometer, Deep-Sea Res. 16A:337–346.CrossRefGoogle Scholar
  196. Smith, K. L., Jr., Carlucci, A. F., Jahnke, R. A., and Craven, D. B., 1987, Organic carbon mineralization in the Santa Catalina Basin: Benthic boundary layer metabolism, Deep-Sea Res. 34:185–211.CrossRefGoogle Scholar
  197. Suess, E., 1980, Particulate organic carbon flux in the oceans—surface productivity and oxygen utilization, Nature 288:260–263.CrossRefGoogle Scholar
  198. Sverdrup, H. U., Johnson, M. W., and Fleming, R. H., 1942, The Oceans: Their Physics, Chemistry, and General Biology, Prentice-Hall, New York, 1060 pp.Google Scholar
  199. Taylor, E. C., 1982, Role of aerobic microbial populations in cellulose digestion by desert millipedes, Appl. Environ. Microbiol. 44:281–291.Google Scholar
  200. Thiel, H., 1983, Meiobenthos and nanobenthos of the deep sea, in: The Sea, Vol. 8, Deep-Sea Biology (G. T. Rowe, ed.), Wiley-Interscience, New York, pp. 167–230.Google Scholar
  201. Thistle, D., Yingst, J. Y., and Fauchald, K., 1985, A deep-sea benthic community exposed to strong near-bottom currents on the Scotian Rise (Western Atlantic), Mar. Geol. 66:91–112.CrossRefGoogle Scholar
  202. Tietjen, J. H., Deming, J. W., Rowe, G. T., Macko, S., and Wilke, R. J., 1989, Meiobenthos of the Hatteras Abyssal Plain and Puerto Rico Trench: Abundance and associations with bacteria and particulate fluxes, Deep-Sea Res. 36:1567–1577.CrossRefGoogle Scholar
  203. Toggweiler, J. R., 1990, Diving into the organic soup, Nature 345:203–204.CrossRefGoogle Scholar
  204. Turley, C. M., Lochte, K., and Patterson, D. J., 1988, A barophilic flagellate isolated from 4500 m in the mid-North Atlantic, Deep-Sea Res. 35:1079–1092.CrossRefGoogle Scholar
  205. U.S. GOFS Working Group, 1989, Sediment trap technology and sampling, U.S. Global Ocean Flux Study Planning Report Number 10 (G. Knauer and V. Asper, co-chairs), Woods Hole, Massachusetts, 94 pp.Google Scholar
  206. Val Klump, J., and Martens, C. S., 1983, Benthic nitrogen regeneration, in: Nitrogen in the Marine Environment (E. J. Carpenter and D. G. Capone, eds.), Academic Press, New York, pp. 411–457.Google Scholar
  207. Velji, M. I., and Albright, L. J., 1986, Microscopic enumeration of attached bacteria of seawater, marine sediment, fecal matter, and kelp blade samples following pyrophosphate and ultrasound treatments, Can. J. Microbiol. 32:121–126.CrossRefGoogle Scholar
  208. Vinogradov, M. E., 1968, Vertical Distribution of the Oceanic Zooplankton, Nauka, Moscow.Google Scholar
  209. Vitalis, T. Z., Spence, M. J., and Carefoot, T. H., 1988, The possible role of gut bacteria in nutrition and growth of the sea hare Aplysia, Veliger 30:333–341.Google Scholar
  210. Vonk, H. J., and Western, J. R. H., 1984, Comparative Biochemistry and Physiology of Enzymatic Digestion, Academic Press, London.Google Scholar
  211. Wakeham, S. G., Farrington, J., Gagosian, R. B., Lee, C., DeBaar, H., Nigerelli, G., Tripp, B., Smith, S., and Frew, N., 1980, Fluxes of organic matter from a sediment trap experiment in the equatorial Atlantic Ocean, Nature 286:798–800.CrossRefGoogle Scholar
  212. Walsh, J. J., Rowe, G. T., Iverson, R. L., and McRoy, C. P., 1981, Biological export of shelf carbon is a sink of the global CO2 cycle, Nature 291:196–201.CrossRefGoogle Scholar
  213. Walsh, I., Dymond, J., and Collier, R., 1988, Rates of recycling of biogenic components of settling particles in the ocean derived from sediment trap experiments, Deep-Sea Res. 35:43–58.CrossRefGoogle Scholar
  214. Westrich, J. T., and Berner, R. A., 1984, The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested, Limnol. Oceanogr. 29:236–249.CrossRefGoogle Scholar
  215. Wheatcroft, R. A., Jumars, P. A., Smith, C. R., and Nowell, A. R. M., 1990, A mechanistic view of the particulate biodiffusion coefficient: Step lengths, rest periods and transport directions, J. Mar. Res. 48:177–207.CrossRefGoogle Scholar
  216. Wiebe, W. J., 1979, Anaerobic benthic microbial processes: Changes from the estuary to the continental shelf, in: Ecological Processes in Coastal and Marine Systems (R. J. Livingston, ed.), Plenum Press, New York, pp. 469–485.CrossRefGoogle Scholar
  217. Wilke, R. J., Deming, J. W., Macko, S., Tietjen, J., Rowe, G., Stein, D., Fray, C., Khripounoff, A., Koshorek, D., Stepien, J., and Voras, B., 1985, Low-Level-Waste Ocean Disposal Project: R/V Iselin Cruise 19 June–10 July 1984, Data Report, Brookhaven National Laboratory Associated Universities, Inc., Upton, New York.Google Scholar
  218. Yayanos, A. A., 1986, Evolutionary and ecological implications of the properties of deep-sea barophilic bacteria, Proc. Natl. Acad. Sci. U.S.A. 83:9542–9546.CrossRefGoogle Scholar
  219. Yayanos, A. A., and DeLong, E. F., 1987, Deep-sea bacterial fitness to environmental temperatures and pressures, in: Current Perspectives in High Pressure Biology (H. W. Jannasch, R. E. Marquis, and A. M. Zimmerman, eds.), Academic Press, London, pp. 17–32.Google Scholar
  220. Yayanos, A. A., Dietz, A. S., and Van Boxtel, R., 1979, Isolation of a deep-sea barophilic bacterium and some of its growth characteristics, Science 205:808–810.CrossRefGoogle Scholar
  221. Yayanos, A. A., Dietz, A. S., and Van Boxtel, R., 1982, Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria, Appl. Environ. Microbiol. 44:1356–1361.Google Scholar
  222. Yingst, J. Y., and Rhoads, D. C., 1985, The structure of soft-bottom benthic communities in the vicinity of the Texas Flower Garden Banks, Gulf of Mexico, Estuarine Coastal Shelf Sci. 20:569–592.CrossRefGoogle Scholar
  223. Yokoe, Y., and Yasumasu, I., 1964, The distribution of cellulase in invertebrates, Comp. Biochem. Physiol. 13:323–338.CrossRefGoogle Scholar
  224. ZoBell, C. E., and Morita, R. Y., 1957, Barophilic bacteria in some deep-sea sediments, J. Bacteriol. 73:563–568.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Jody W. Deming
    • 1
  • John A. Baross
    • 1
  1. 1.School of OceanographyUniversity of WashingtonSeattleUSA

Personalised recommendations