Advertisement

Macromolecules from Living and Fossil Biominerals

Implications for the Establishment of Molecular Phylogenies
  • L. L. Robbins
  • G. Muyzer
  • K. Brew
Part of the Topics in Geobiology book series (TGBI, volume 11)

Abstract

The study of fossils as a means of establishing the geologic age and long-distance correlation of strata has been recognized as one of the most precise and reliable instruments of stratigraphy. Relatively rapid rates of evolution and easily fossilizable shells are two important elements which account for this fact. Two different invertebrate taxa whose stratigraphic utility has been extensively exploited are the microfossil foraminifera and the macrofossil mollusks. These taxa will be discussed in this chapter in terms of their application in molecular paleontology.

Keywords

Benthic Foraminifera Antigenic Determinant Organic Geochemistry Planktonic Foraminifera Oyster Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, P. H., 1955, Organic constituents of fossils, Carnegie Inst. Washington Yearb. 54:107–109.Google Scholar
  2. Abelson, P. H., 1956, Paleobiochemistry, Sci. Am. 195(1):.CrossRefGoogle Scholar
  3. Addadi, L., and Weiner, S., 1985, Interactions between acidic proteins and crystals: Stereochemical requirements in biomine-ralization, Proc. Natl. Acad. Sci. U.S.A. 82:4110–4114.CrossRefGoogle Scholar
  4. Akiyama, M., 1971, The amino acid composition of fossil scallop shell proteins and non-proteins, Biominer. Res. Rep. 3:65–70.Google Scholar
  5. Armstrong, W. G., Halstead, L. B., Reed, F. B., and Wood, L., 1983, Fossil proteins in vertebrate calcified tissue, Philos. Trans. R. Soc. London, Ser. B 301:301–343.CrossRefGoogle Scholar
  6. Biemann, K., 1988, Contributions of mass spectrometry to peptide and protein structure, Biomed. Environ. Mass Spectrom. 16: 99–111.CrossRefGoogle Scholar
  7. Collins, M. J., Curry, G. B., Quinn, R., Muyzer, G., Zomerdijk, T., and Westbroek, P., 1988, Sero-taxonomy of skeletal macromolecules in living terebratulid brachiopods, Hist. Biol. 1: 207–224.Google Scholar
  8. Collins, M., Curry, G., Muyzer, G., and Quinn, R., 1989, The prospects for molecular paleontology, Terra Abstracts 1:194.Google Scholar
  9. Cornish-Bowden, A., 1983, Relating proteins by amino acid composition, Methods Enzymol. 91:60–75.CrossRefGoogle Scholar
  10. Creighton, T. E., 1983, Proteins: Structures and Molecular Principles, W. H. Freeman and Co., New York.Google Scholar
  11. Crenshaw, M. A., 1972, The soluble matrix from Mercenaria mercenaria shell, Biomineralization 6:6–11.Google Scholar
  12. Curry, G., 1987a, Molecular palaeontology: New life for old molecules, Trends Ecol. Evol. 2:161–165.CrossRefGoogle Scholar
  13. Curry, G., 1987b, Molecular palaeontology, Geol. Today 1987(Jan.): 12–16.Google Scholar
  14. Curry, G., 1988, Molecular evolution and the fossil record, in: Short Courses in Paleontology, Vol. 1 (Thomas W. Broadhead, ed.), Paleontological Society, Knoxville, TN, pp. 20–33.Google Scholar
  15. de Jong, E. W., Westbroek, P., Westbroek, J. F., and Bruning, J. W., 1974, Preservation of antigenic properties in macromolecules over 70 Myr old, Nature 252:63–64.CrossRefGoogle Scholar
  16. Donachy, J. E., Drake, B., and Sikes, C. S., 1992, Sequence and atomic-force microscopy analysis of a matrix protein from the shell of the oyster Crassostrea virginica, Marine Biology 114:423–428.CrossRefGoogle Scholar
  17. Dungworth, G., Vincken, J. A., and Schwartz, A. W., 1975, Amino acid compositions of Pleistocene collagens, Comp. Biochem. Physiol. B 51:331–335.Google Scholar
  18. Elwood, H. J., Olsen, G. J., and Sogin, M. L., 1985, The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliates Oxytricha nova and Stylonchia pustulosa, Mol. Biol. Evol. 2:399–410.Google Scholar
  19. Farris, J. S., 1972, Estimating phylogenetic trees from distance matrices, Am. Nat. 106:645–668.CrossRefGoogle Scholar
  20. Felsenstein, J., 1988, Phylogenies from molecular sequences: Inference and reliability, Annu. Rev. Genet. 22:521–566.CrossRefGoogle Scholar
  21. Fitch, W. M., and Margoliash, E., 1967, Construction of phylogenetic trees: A method based on mutational distances as estimated from cytochrome c sequences is of general applicability, Science 155:279–284.CrossRefGoogle Scholar
  22. Gillespie, J. M., 1970, Mammoth hair: Stability of α-keratin structure and constituent proteins, Science 170:.Google Scholar
  23. Goodman, J. W., 1980, Immunogenicity and antigenic specificity, in: Basic and Clinical Immunology (H. H. Fundenberg, D. P. Sites, J. L. Caldwell, and J. V. Wells, eds.), Lange Medical Publications, Los Altos, California, pp. 44–52.Google Scholar
  24. Hare, P. E., 1969, Organic geochemistry of proteins, peptides, and amino acids, in: Organic Geochemistry: Methods and Results (G. Eglinton and M. Murphy, eds.), Springer-Verlag, New York, pp. 438–463.Google Scholar
  25. Hare, P. E., Fogel, M. L., Stafford, T. W., Jr., Mitchell, A. D., and Hoering, T. C., 1991, The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins, J. Archaeol. Sci. 18:277–292.CrossRefGoogle Scholar
  26. Haugen, J.-E., Sejrup, H.-P., and Vogt, N. B., 1989, Chemotaxonomy of Quaternary benthic foraminifera using amino acids, J. Foraminiferal Res. 19(1):38–51.CrossRefGoogle Scholar
  27. Heinrickson, R. L., and Meridith, S. C., 1984, Amino acid analysis by reverse-phase high-performance liquid chromatography: Precolumn derivatization with phenylisothiocyanate, Anal. Biochem. 136:65–74.CrossRefGoogle Scholar
  28. Hemleben, C., Be, A., Anderson, O. R., and Tuntivate, S., 1977, Test morphology, organic layers, and chamber formation of the planktonic foraminifera Glohorotalia menardii (d’Orbigny), J. Foraminiferal Bes. 7:1–25.CrossRefGoogle Scholar
  29. Hemleben, C., Spindler, M., and Anderson, O. R., 1989, Modern Planktonic Foraminifera, Springer-Verlag, New York.CrossRefGoogle Scholar
  30. Hill, R. L., 1967, Hydrolysis of proteins, in: Advances in Protein Chemistry (C. B. Anfinsen, Jr., M. L. Anson, J. T. Edsall, and F. M. Richards, eds.), Academic Press, New York, pp. 37–107.Google Scholar
  31. Hoering, T. C., 1980, The organic constituents of fossil mollusc shells, in: Biogeochemistry of Amino Acids (P. E. Hare, T. C. Hoering, and K. King, Jr., eds.), John Wiley & Sons, New York, pp. 193–201.Google Scholar
  32. Jope, M., 1973, The protein of brachiopod shell—V. N. terminal end groups, Comp Biochem. Physiol. B 45:17–24.Google Scholar
  33. Jope, M., 1979, The protein of the brachiopod shell—VI. C-terminal end groups and sodium dodecylsulphate-polyacrylamide gel electrophoresis: Molecular constitution and structure of the protein, Comp. Biochem. Physiol. B 63:163–173.Google Scholar
  34. Joysey, K. A., and Friday, A. E. (eds.), 1982, Problems of Phylogenetic Reconstruction, Systematics Association Special Volume 21, Academic Press, New York.Google Scholar
  35. Kennett, J. P., 1976, Phenotypic variation in some Recent and Late Cenozoic planktonic foraminifera, in: Foraminifera, Vol. 2 (R. H. Hedley and C. D. Adams, eds.), Academic Press, London, pp. 111–169.Google Scholar
  36. Kimura, M., 1977, Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution, Nature 267:275–276.CrossRefGoogle Scholar
  37. King, K., Jr., and Hare, P. E., 1972, Amino acid composition of the test as a taxonomic character for living and fossil planktonic foraminifera, Micropaleontology 18:285–293.CrossRefGoogle Scholar
  38. Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibodies of pre-defined specificity, Nature 256:495–497.CrossRefGoogle Scholar
  39. Kramptiz, G., Drolshagen, H., Hausle, J., and HofIrmscher, K., 1983, Organic matrices of mollusc shells, in: Biomineralization and Biological Metal Accumulation (P. Westbroek and E. W. de-Jong, eds.), Reidel, Dordrecht, pp. 231–247.CrossRefGoogle Scholar
  40. Langer, M. R., Lipps, J. H., and Simison, W. B., 1992, Testing the molecular clock of evolution with planktic foraminifera, Abstract in American Geophysical Union EOS 73 (43, supplement):273.Google Scholar
  41. Lipps, J. H., Langer, M. R., Piller, W. E., Simison, W. B., Berbee, M., Lo Buglio, K., and Taylor, J., 1992, Molecular phylogeny of Foraminifera and Radiolaria Abstract, in American Geophysical Union EOS 73 (43, supplement):319.Google Scholar
  42. Lowenstam, H. A., and Weiner, S., 1989, On Biomineraiization, Oxford University Press, New York.Google Scholar
  43. Lowenstein, J., 1980a, Immunospecificity of fossil collagens, in: Biogeochemistry of Amino Acids (P. E. Hare, T. C. Hoering, and K. King, eds.), John Wiley & Sons, New York, pp. 41–51.Google Scholar
  44. Lowenstein, J. M., 1980b, Species-specific proteins in fossils, Naturwissenschaften 67:343–346.CrossRefGoogle Scholar
  45. Lowenstein, J. M., Sarich, V. M., and Richardson, B. J., 1981, Albumin systematics of the extinct mammoth and Tasmanian wolf, Nature 291:409–411.CrossRefGoogle Scholar
  46. Malmgren, G., and Kennett, J. P., 1972, Biometric analysis of Phenotypic variation of Globigerina pachyderma (Ehrenberg) in the S. Pacific Ocean, Micropaieontology 8(2):241–248.CrossRefGoogle Scholar
  47. Mann, S., 1988, Molecular recognition in biomineraiization, Nature 32:119–124.CrossRefGoogle Scholar
  48. Matter, P. F., Davidson, D., and Wyckoff, R. W. G., 1969, The composition of fossil oyster shell proteins, Proc. Natl. Acad. Sci. U.S.A. 64:970–972.CrossRefGoogle Scholar
  49. Mitterer, R. M., and Cunningham, R., Jr., 1985, The interaction of natural organic matter with grain surfaces: Implications for calcium carbonate precipitation, In Carbonate Cements (N. Schneidermann and P. M. Harris, eds.) Soc. Econ. Paleontol. Mineral. Spec. Publ. 36:17–31.Google Scholar
  50. Muyzer, G., 1988, Immunological approaches in geological research, Thesis, Leiden University, The Netherlands.Google Scholar
  51. Muyzer, G., and Westbroek, P., 1989, An immunohistochemical technique for the localization of preserved biopolymeric remains in fossils, Geochim. Cosmochim. Acta 53:1699–1702.CrossRefGoogle Scholar
  52. Muyzer, G., Westbroek, P., deVrind, J. P. M., Tanke, J., Vrijheid, T., de Jong, E. W., Bruning, J. W., and Wehmiller, J. F., 1984, Immunology and organic geochemistry, Org. Geochem. 6:847–855.CrossRefGoogle Scholar
  53. Muyzer, G., Westbroek, P., and Wehmiller, J. F., 1988, Phylogenetic implications and diagenetic stability of macromolecules from Pleistocene and Recent shells of Mercenaria mercenaria (Mollusca, Bivalva), Hist. Biol. 1:135–144.Google Scholar
  54. Nuttall, G. H. F., and Dinkelspiel, E. M., 1901, On the formation of specific anti-bodies in the blood following upon treatment with the sera of different animals, together with their use in legal medicine, J. Hyg. 1:357–387.Google Scholar
  55. Olsen, G. J., 1988, Phylogenetic analysis using ribosomal RNA, Methods Enzymol. 164:793–812.CrossRefGoogle Scholar
  56. Ostrom, P. H., Zonneveld, J.-P., and Robbins, L. L., Organic geochemistry of hard parts: Assessment of isotopic variability and indigeneity, Paiaeogeography, Paiaeoclimatoiogy, Palaeoecology, in press.Google Scholar
  57. Pääbo, S., 1989, Ancient DNA: Extraction, characterization, molecular cloning and enzymatic amplification, Proc. Natl. Acad. Sci. U.S.A. 86:1939–1943.CrossRefGoogle Scholar
  58. Penny, D., Foulds, L. R., and Hendy, M. D., 1982, Testing the theory of evolution by comparing phylogenetic trees constructed from five different protein sequences, Nature 297:197–200.CrossRefGoogle Scholar
  59. Prager, E. M., Wilson, A. C., Lowenstein, J. M., and Sarich, V. M., 1980, Mammoth albumin, Science 209:287–289.CrossRefGoogle Scholar
  60. Robbins, L. L., 1987, Morphologie variability and protein isolation and characterization of recent planktonic foraminifera, Ph.D. Dissertation, University of Miami.Google Scholar
  61. Robbins, L., 1988, Environmental significance of morphologie variability in open-ocean versus ocean-margin assemblages of Orbulina universa, J. Foraminiferal Res. 18(4):326–333.CrossRefGoogle Scholar
  62. Robbins, L., and Brew, K., 1990, Proteins from the organic matrix of Recent and fossil planktonic foraminifera, Geochim. Cosmochim. Acta 54:2285–2292.CrossRefGoogle Scholar
  63. Robbins, L. L., and Donachy, J., 1991, Mineralization regulating proteins in fossil planktonic foraminifera, in: Commodity Polypeptides (C. S. Sikes and A. P. Wheeler, eds.), ACS Books, Washington, D.C.Google Scholar
  64. Robbins, L. L., and Healy-Williams, N., 1991, Towards a classification of planktonic foraminifera based on biochemical, geochemical, and morphological criteria, J. Foraminiferal Res. 21(2):159–167.CrossRefGoogle Scholar
  65. Robbins, L. L., Toler, S. K., and Donachy, J. E., Immunological and biochemical analysis of shell matrix proteins in living and fossil foraminifera, Lethaia, in press.Google Scholar
  66. Runnegar, B., 1986, Molecular palaeontology, Palaeontology 29(1): 1–24.Google Scholar
  67. Rusenko, K. W., 1988, Studies on the structure and function of shell matrix proteins from the american oyster, Crassostrea virginica, Ph.D. DissertationGoogle Scholar
  68. Schroeder, W. A., Shelton, J. R., Shelton, J. B., Cormick, J., and Jones, R. T., 1963, The amino acid sequence of the γ chain of human fetal hemoglobin, Biochemistry 2:992–1008.CrossRefGoogle Scholar
  69. Shively, J. E. (ed.), 1986, Methods of Protein Microcharacterization: A Practical Handbook, Humana Press, Clifton, New Jersey.Google Scholar
  70. Sikes, C. S., and Wheeler, A., 1983, A systematic approach to some fundamental questions of carbonate calcification, in: Biomineralization and Biological Metal Accumulation (P. Westbroek and E. W. de Jong, eds.), Reidel, Dordrecht, pp. 285–289.CrossRefGoogle Scholar
  71. Sikes, C. S., and Wheeler, A., 1986, The organic matrix from oyster shell as regulator of calcification in vivo, Biol. Bull. 170: 494–505.CrossRefGoogle Scholar
  72. Spicer, G. S., 1988, Molecular evolution among some Drosophila species groups as indicated by two-dimensional electrophoresis, J. Mol. Evol. 27:250–260.CrossRefGoogle Scholar
  73. Stathoplos, L., 1989, Amino acids in planktonic foraminiferal tests, Ph.D. Dissertation, University of Rhode Island.Google Scholar
  74. Tolan, D., Lambert, S. M., Boileau, G., Fanning, T. G., Kenny, J. W., Vassos, A., and Traut, R. R., 1980, Radioiodination of microgram quantities of ribosomal proteins from Polyacrylamide gels, Anal. Biochem. 103:101–109.CrossRefGoogle Scholar
  75. Toler, S. K., 1993, Characterization of shell soluble matrix proteins from six genera of Soritacea Foraminifera, M.S. Thesis, University of South Florida.Google Scholar
  76. Totten, D. K., Davidson, F. D., and Wyckoff, R. W. G., 1972, Amino acid composition of heated oyster shells, Proc. Natl. Acad. Sci. U.S.A. 69:784–785.CrossRefGoogle Scholar
  77. Towe, K. M., 1971, Lamellar wall construction in planktonic foraminifera, in: Proceedings of the IInd Planktonic Conference, Rome (A. Farinacci, ed.), pp. 1213–1218.Google Scholar
  78. Towe, K. M., 1980, Preserved organic ultrastructure: An unreliable indicator for Paleozoic amino acid biogeochemistry, in: Biogeochemistry of Amino Acids (P. E. Hare, T C. Hoering, and K. King, Jr., eds.), John Wiley & Sons, New York, pp. 65–74.Google Scholar
  79. Towe, K. M., and Cifelli, R., 1967, Wall structure in the calcareous foraminifera: Crystallographic aspects and a model for calcification, J. Paleontol. 41(3):742–762.Google Scholar
  80. Tuross, N., Fogel, M. L., and Hare, P. E., 1988, Variability in the preservation of isotopic composition of collagen from fossil bone, Geochim. Cosmochim. Acta 52:929–935.CrossRefGoogle Scholar
  81. Weiner, S., Lowenstam, H. A., Taborek, B. and Hood, L., 1979, Fossil mollusk shell organic matrix components preserved for 80 million years, Paleobiology 5:144–150.Google Scholar
  82. Weiner, S., 1982, Separation of acidic proteins from mineralized tissues by reversed phase high performance liquid chromatography, J. Chromatogr. 245:148–154.CrossRefGoogle Scholar
  83. Weiner, S., and Erez, J., 1984, Organic matrix of the shell of the foraminifer, Heterostegina depressa, J. Foraminiferal Res. 14(3):206–212.CrossRefGoogle Scholar
  84. Weiner, S., and Lowenstam, H. A., 1981, Well preserved fossil mollusk shells: Characterization of mild diagenetic processes, in: Biogeochemistry of Amino Acids (P. E. Hare, T. C. Hoering, and K. King, Jr., eds.), John Wiley & Sons, New York, pp. 95–119.Google Scholar
  85. Weiner, S., and Traub, W., 1984, Macromolecules in mollusc shells and their function in biomineralization, Philos. Trans. R. Soc. London, Ser. B 304:425–434.CrossRefGoogle Scholar
  86. Weiner, S., Traub, W., and Lowenstam, H., 1983, Organic matrix in calcified exoskeletons, in: Biomineralization and Biological Metal Accumulation (P. Westbroek and E. W. de Jong, eds.), Reidel, Dordrecht, pp. 205–224.CrossRefGoogle Scholar
  87. Westbroek, P. van der Meide, P. H., van der Wey-Kloppers, J. S., van der Sluis, R. J., de Leeuw, J. W., and de Jong, E. W., 1979, Fossil macromolecules from cephalopod shells: Characterization, immunological response and diagenesis, Paleobiology 5: 151–167.Google Scholar
  88. Wheeler, A. P., Rusenko, K. W., George, J. W., and Sikes, C. S., 1987, Evaluation of calcium binding by oyster shell soluble matrix and its role in biomineralization, Comp. Biochem. Physiol., B 87:953–960.Google Scholar
  89. Wheeler, A. P., Rusenko, K. W., Swift, D. M., and Sikes, C. S., 1988, Regulation of in vitro and in vivo CaCO3 crystallization by fractions of oyster shell organic matrix, Mar. Biol. 98:71–80.CrossRefGoogle Scholar
  90. Wilson, A. C., Carlson, S. S., and White, T. J., 1977, Biochemical evolution, Annu. Rev. Biochem. 45:573–639.CrossRefGoogle Scholar
  91. Wyckoff, R. W. G., 1972, The Biochemistry of Animal Fossils, Scientechnica, Bristol.Google Scholar
  92. Wyckoff, R. W. G., and Doberenz, A. R., 1965, Electron microscopy of Rancho La Brea bone, Proc. Natl. Acad. Sci. U.S.A. 53: 230–233.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • L. L. Robbins
    • 1
  • G. Muyzer
    • 2
  • K. Brew
    • 3
  1. 1.Department of GeologyUniversity of South FloridaTampaUSA
  2. 2.Department of BiochemistryLeiden UniversityLeidenThe Netherlands
  3. 3.Department of Biochemistry and Molecular BiologyUniversity of Miami School of MedicineMiamiUSA

Personalised recommendations