Skip to main content

The Initiation of Biological Processes on Earth

Summary of Empirical Evidence

  • Chapter
Organic Geochemistry

Part of the book series: Topics in Geobiology ((TGBI,volume 11))

Abstract

With the terrestrial rock record constituting the only source of geological and paleontological information, empirical evidence as to the initiation of life processes on the ancient Earth necessarily cannot predate the appearance of the oldest sediments about 3.8 Gyr ago (1 Gyr = 109 yr). Accordingly, the beginnings of biology in the geologically undocumented “Hadean” era that preceded the onset of the sedimentary record are likely to remain shrouded in mystery. However, several lines of indirect and circumstantial evidence tend to constrain relevant speculations, permitting plausible inferences as to the sequence of events that led to the establishment of life on the surface of this planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, V. K., Schutte, W., Greenberg, J. M., Ferris, J. P., Briggs, R., Connor, S., Van de Bult, C. P. E. M., and Baas, F., 1985, Photochemical reactions in interstellar grains: Photolysis of CO, NH3 and H2O, Origins Life 16:21–40.

    Article  CAS  Google Scholar 

  • Allaart, J. H., 1976, The pre-3760-Myr old supracrustal rocks of the Isua area, central West Greenland, and the associated occurrence of quartz-banded ironstone in: The Early History of the Earth (B. F. Windley, ed.), John Wiley & Sons, New York, pp. 177–189.

    Google Scholar 

  • Arneth, J. D., Schidlowski, M., Sarbas, B., Goerg, U., and Amstutz, G. C., 1985, Graphite content and isotopic fractionation between calcite-graphite pairs in metasediments from the Mgama Hills, Southern Kenya, Geochim. Cosmochim. Acta 49:1553–1560.

    Article  CAS  Google Scholar 

  • Awramik, S. M., 1982, The pre-Phanerozoic fossil record, in: Mineral Deposits and Evolution of the Biosphere (H. D. Holland and M. Schidlowski, eds.), Springer-Verlag, Berlin, pp. 67–81.

    Chapter  Google Scholar 

  • Awramik, S. M., Schopf, J. W., and Walter, M. R., 1983, Filamentous fossil bacteria from the Archean of Western Australia, in: Developments and Interactions of the Precambrian Atmosphere, Lithosphere and Biosphere (B. Nagy, R. Weber, J. C. Guerrero, and M. Schidlowski, eds.), Developments in Precambrian Geology, Vol. 7, Elsevier, Amsterdam, pp. 249–266.

    Google Scholar 

  • Barghoorn, E. S., and Tyler, S. A., 1965, Microorganisms from the Gunflint chert, Science 147:563–577.

    Article  CAS  Google Scholar 

  • Bond, G., Wilson, J. F., and Winnall, N. J., 1973, Age of the Huntsman limestone (Bulawayan) stromatolites, Nature 244:275–276.

    Article  Google Scholar 

  • Bottinga, Y., 1969, Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor, Geochim. Cosmochim. Acta 33:49–64.

    Article  CAS  Google Scholar 

  • Bridgwater, D., Allaart, J. H., Schopf, J. W., Klein, C., Walter, M. R., Barghoorn, E. S., Strother, P., Knoll, A. H., and Gorman, B. E., 1981, Microfossil-like objects from the Archean of Greenland: A cautionary note, Nature 289:51–53.

    Article  Google Scholar 

  • Broda, E., 1975, The Evolution of the Bioenergetic Processes, Pergamon Press, Oxford.

    Google Scholar 

  • Buick, R., 1984, Carbonaceous filaments from North Pole, Western Australia: Are they fossil bacteria in Archean stromatolites? Precamb. Res. 24:157–172.

    Article  Google Scholar 

  • Burne, R. V., and Moore, L. S., 1987, Microbialites: Organosedimentary deposits of benthic microbial communities, Palaios 2:241–254.

    Article  Google Scholar 

  • Byerly, G. R., Lowe, D. R., and Walsh, M. M., 1986, Stromatolites from the 3,300–3,500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa, Nature 319:489–491.

    Article  CAS  Google Scholar 

  • Cloud, P. E., 1965, Significance of the Gunflint (Precambrian) microflora, Science 148:27–45.

    Article  Google Scholar 

  • Cloud, P. E., 1976, Beginnings of biospheric evolution and their biogeochemical consequences, Paleobiology 2:351–387.

    CAS  Google Scholar 

  • Cohen, Y., Aizenshtat, Z., Stoler, A., and Jorgensen, B. B., 1980, The microbial geochemistry of Solar Lake, Sinai, in: Biogeochemistry of Ancient and Modern Environments (J. B. Ralph, P. A. Trudinger, and M. R. Walter, eds.), Springer-Verlag, Berlin, pp. 167–172.

    Chapter  Google Scholar 

  • Craig, H., 1953, The geochemistry of stable carbon isotopes, Geochim. Cosmochim. Acta 3:53–92.

    Article  CAS  Google Scholar 

  • Degens, E. T., 1969, Biogeochemistry of stable carbon isotopes, in: Organic Geochemistry (G. Eglinton and M. T. J. Murphy, eds.), Springer-Verlag, Berlin, pp. 304–329.

    Google Scholar 

  • Deines, P., 1980, The isotropic composition of reduced organic carbon, in: Handbook of Environmental Isotope Geochemistry, Vol. 1 (P. Fritz, and J. C. Fontes, eds.), Elsevier, Amsterdam, pp. 329–406.

    Google Scholar 

  • Dunlop, J. S. R., Muir, M. D., Milne, V A., and Groves, D. I., 1978, A new microfossil assemblage from the Archaean of Western Australia, Nature 274:676–678.

    Article  Google Scholar 

  • Durand, B. (ed.), 1980, Kerogen—Insoluble Organic Matter from Sedimentary Rocks, Editions Technip, Paris.

    Google Scholar 

  • Eichmann, R., and Schidlowski, M., 1975, Isotopic fractionation between coexisting organic carbon-carbonate pairs in Precambrian sediments, Geochim. Cosmochim. Acta 39:585–595.

    Article  CAS  Google Scholar 

  • Garrels, R. M., and Mackenzie, F. T., 1971, Evolution of Sedimentary Rocks, Norton, New York.

    Google Scholar 

  • Glaessner, M. F., 1983, The emergence of Metazoa in the early history of life, in: Developments and Interactions of the Precambrian Atmosphere, Lithosphere and Biosphere (B. Nagy, R. Weber, J. C. Guerrero, and M. Schidlowski, eds.), Elsevier, Amsterdam, pp. 319–333.

    Google Scholar 

  • Glaessner, M., 1984, The Dawn of Animal Life, Cambridge University Press, Cambridge.

    Google Scholar 

  • Golubic, S., and Barghoorn, E. S., 1977, Interpretation of microbial fossils with special reference to the Precambrian, in: Fossil Algae (E. Flügel, ed.), Springer-Verlag, Berlin, pp. 1–14.

    Chapter  Google Scholar 

  • Greenberg, J. M., 1984, Chemical evolution in space, in: Proceedings of the 27th International Geological Congress, Volume 19 (N. A. Bogdanov, ed.), VNU Science Press, Utrecht, pp. 209–228.

    Google Scholar 

  • Greenberg, J. M., 1985, The chemical and physical evolution of interstellar dust, Phys. Scr. T11:14–26.

    Article  CAS  Google Scholar 

  • Hayes, J. M., Kaplan, I. R., and Wedeking, K. W., 1983, Precambrian organic geochemistry: Preservation of the record, in: Earth’s Earliest Biosphere: Its Origin and Evolution (J. W. Schopf, ed.), Princeton University Press, Princeton, New Jersey, pp. 93–134.

    Google Scholar 

  • Hofmann, H. J., 1973, Stromatolites: Characteristics and utility, Earth Sci. Rev. 9:339–373.

    Article  Google Scholar 

  • Irvine, W. M., and Knacke, R. F., 1989, The chemistry of interstellar gas and grains, in: Origin and Evolution of Planetary and Satellite Atmospheres (S. K. Atreya, J. B. Pollack, and M. S. Matthews, eds.), University of Arizona Press, Tucson, pp. 3–34.

    Google Scholar 

  • Junge, C. E., Schidlowski, M., Eichmann, R., and Pietrek, H., 1975, Model calculations for the terrestrial carbon cycle: Carbon isotope geochemistry and evolution of photosynthetic oxygen, J. Geophys. Res. 80:4542–4552.

    Article  CAS  Google Scholar 

  • Kazmierczak, J., 1979, The eukaryotic nature of Eosphaera-like ferriferous structures from the Precambrian Gunflint Iron Formation, Canada: A comparative study, Precamb. Res. 9:1–22.

    Article  Google Scholar 

  • Kissel, J., and Krueger, F.R., 1987, The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1, Nature 326:755–760.

    Article  CAS  Google Scholar 

  • Knoll, A. H., and Awramik, S. M., 1984, Ancient microbial ecosystems, in: Microbial Geochemistry (W. E. Krumbein, ed.), Blackwell Scientific, Oxford, pp. 287–315.

    Google Scholar 

  • Knoll, A. H., and Barghoorn, E. S., Knoll, A. H., and Barghoorn, E. S., 1977, Archean microfossils showing cell division from the Swaziland System of South Africa, Science 198:396–398.

    Article  CAS  Google Scholar 

  • Knoll, A. H., Strother, P. K., and Rossi, S., 1988, Distribution and diagenesis of microfossils from the Lower Proterozoic Duck Creek Dolomite, Western Australia, Precamb. Res. 38:257–279.

    Article  CAS  Google Scholar 

  • Kreulen, R., and van Beek, P. C. J. M., 1983, The calcite-graphite isotope thermometer; data on graphite-bearing marbles from Naxos, Greece, Geochim. Cosmochim. Acta 47:1527–1530.

    Article  CAS  Google Scholar 

  • Krumbein, W. E., and Cohen, Y., 1977, Primary production, mat formation and lithification chances of oxygenic and facultative anoxygenic cyanophytes (cyanobacteria), in: Fossil Algae (E. Flügel, ed), Springer-Verlag, Berlin, pp. 37–56.

    Chapter  Google Scholar 

  • Lowe, D. R., 1980, Stromatolites 3,400-Myr old from the Archean of Western Australia, Nature 284:441–443.

    Article  Google Scholar 

  • MacGregor, A. M., 1940, A Precambrian algal limestone in Southern Rhodesia, Trans. Geol. Soc. S. Afr. 43:9–15.

    Google Scholar 

  • Mason, T. R., and von Brunn, V., 1977, 3-Gyr-old stromatolites from South Africa, Nature 266:47–49.

    Article  Google Scholar 

  • Miller, S. L., 1955, Production of some organic compounds under possible primitive Earth conditions, J. Am. Chem. Soc. 77: 2351–2361.

    Article  CAS  Google Scholar 

  • Miller, S. L., Urey, H. C., and Oro, J., 1976, Origin of organic compounds on the primitive Earth and in meteorites, J. Mol. Evol. 9:59–72.

    Article  CAS  Google Scholar 

  • Monty, C., 1984, Stromatolites in Earth history, Terra Cognita 4: 423–430.

    Google Scholar 

  • Muir, M. D., and Grant, P. R., 1976, Micropaleontological evidence from the Onverwacht Group, South Africa, in: The Early History of the Earth (B. F. Windley, ed.), Wiley, London, pp. 595–604.

    Google Scholar 

  • Murphey, B. F., and Nier, A. O., 1941, Variations in the relative abundance of the carbon isotopes, Phys. Rev. 59:771–772.

    Article  CAS  Google Scholar 

  • Nier, A. O., and Gulbransen, E. A., 1939, Variations in the relative abundance of the carbon isotopes, J. Am. Chem. Soc. 61: 697–698.

    Article  CAS  Google Scholar 

  • Ohmoto, H., and Felder, R. P., 1987, Bacterial activity in the warmer, sulphate-bearing, Archaean oceans, Nature 328:244–246.

    Article  CAS  Google Scholar 

  • O’Leary, M. H., 1981, Carbon isotope fractionation in plants, Phytochemistry 20:553–567.

    Article  Google Scholar 

  • Orpen, J. L., and Wilson, J. F., 1981, Stromatolites at 3,500 Myr and a greenstone-granite unconformity in the Zimbabwean Archaean, Nature 291:218–220.

    Article  Google Scholar 

  • Park, R., and Epstein, S., 1960, Carbon isotope fractionation during photosynthesis, Geochim. Cosmochim. Acta 21:110–126.

    Article  CAS  Google Scholar 

  • Perry, E. C., Monster, J., and Reimer, T., 1971, Sulfur isotopes in Swaziland System barites and the evolution of the Earth’s atmosphere, Science 171:1015–1016.

    Article  CAS  Google Scholar 

  • Pflug, H. D., 1978, Yeast-like microfossils detected in the oldest sediments of the Earth, Naturwissenschaften 65:611–615.

    Article  Google Scholar 

  • Pflug, H. D., 1987, Chemical fossils in early minerals, Top. Curr. Chem. 139:1–55.

    Article  CAS  Google Scholar 

  • Pflug, H. D., and Jaeschke-Boyer, H., 1979, Combined structural and chemical analysis of 3,800-Myr-old microfossils, Nature 280: 483–486.

    Article  CAS  Google Scholar 

  • Pflug, H. D., and Reitz, E., 1985, Earliest phytoplankton of eukaryotic affinity, Naturwissenschaften 72:656–657.

    Article  Google Scholar 

  • Pflug, H. D., and Reitz, E., 1992, Palynostratigraphy in Phanerozoic and Precambrian metamorphic rocks, in: Early Organic Evolution: Implications for Mineral and Energy Resources (M. Schidlowski, S. Golubic, M. M. Kimberley, D. M. McKirdy, and P. A. Trudinger, eds.), Springer-Verlag, Berlin, pp. 509–518.

    Chapter  Google Scholar 

  • Rankama, K., 1948, New evidence of the origin of Pre-Cambrian carbon, Geol. Soc. Am. Bull. 59:389–416.

    Article  CAS  Google Scholar 

  • Robbins, E. I., 1987, Appelella ferrifera, a possible new iron-coated microfossil in the Isua iron-formation, southwestern Greenland, in: Precambrian Iron-Formations (P. W. U. Appel and G. L. LaBerge, eds.), Theophrastus Publications, Athens, pp. 141–154.

    Google Scholar 

  • Roedder, E., 1981, Are the 3,800-Myr-old Isua objects microfossils, limonite-stained fluid inclusions, or neither? Nature 293: 459–462.

    Article  Google Scholar 

  • Ronov, A. B., 1958, Organic carbon in sedimentary rocks (in relation to the presence of petroleum), Geochemistry 1958:510–536.

    Google Scholar 

  • Ronov, A. B., 1980, Osadochnaya Oholochka Zemli (Earth’s Sedimentary Shell), 20th Vernadsky Lecture, Izdatelstvo Nauka, Moscow [in Russian].

    Google Scholar 

  • Schidlowski, M., 1978, Evolution of the Earth’s atmosphere: Current state and exploratory concepts, in: Origin of Life (H. Noda, ed.), Center for Academic Publications, Japan, Tokyo, pp. 3–20.

    Google Scholar 

  • Schidlowski, M., 1982, Content and isotopic composition of reduced carbon in sediments, in: Mineral Deposits and the Evolution of the Biosphere (H. D. Holland and M. Schidlowski, eds.), Springer-Verlag, Berlin, pp. 103–122.

    Chapter  Google Scholar 

  • Schidlowski, M., 1984, Early atmospheric oxygen levels: Constraints from Archean photoautotrophy, J. Geol. Soc. London 141:243–250.

    Article  CAS  Google Scholar 

  • Schidlowski, M., 1987, Application of stable carbon isotopes to early biochemical evolution on Earth, Annu. Rev. Earth Planet. Sci. 15:47–72.

    Article  CAS  Google Scholar 

  • Schidlowski, M., 1988, A 3,800-million-year isotopic record of life from carbon in sedimentary rocks, Nature 333:313–318.

    Article  CAS  Google Scholar 

  • Schidlowski, M., 1989, Evolution of the sulphur cycle in the Precambrian, in: Evolution of the Global Biogeochemical Sulphur Cycle, SCOPE Volume 39 (P. Brimblecombe and A. J. Lein, eds.), Wiley, Chichester, England, pp. 3–19.

    Google Scholar 

  • Schidlowski, M., Eichmann, R., and Junge, C. E., 1975, Precambrian sedimentary carbonates: Carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget, Precamb. Res. 2:1–69.

    Article  CAS  Google Scholar 

  • Schidlowski, M., Appel, P. W. U., Eichmann, R., and Junge, C. E., 1979, Carbon isotope geochemistry of the 3.7 × 109 yr old Isua sediments, West Greenland: Implications for the Archean carbon and oxygen cycles, Geochim. Cosmochim. Acta 43: 189–199.

    Article  CAS  Google Scholar 

  • Schidlowski, M., Hayes, J. M., and Kaplan, I. R., 1983, Isotopic inferences of ancient biochemistries: Carbon, sulfur, hydrogen and nitrogen, in: Earth’s Earliest Biosphere: Its Origin and Evolution (J. W. Schopf, ed.), Princeton University Press, Princeton, New Jersey, pp. 149–186.

    Google Scholar 

  • Schoell, M., and Wellmer, F. W., 1981, Anomalous 13C depletion in Early Precambrian graphites from Superior Province, Canada, Nature 290:696–699.

    Article  CAS  Google Scholar 

  • Schopf, J. W., 1968, Microflora of the Bitter Springs Formation, Late Precambrian, Central Australia, J. Paleontol. 42:651–688.

    Google Scholar 

  • Schopf, J. W., and Oehler, D. Z., 1976, How old are the eukaryotes? Science 193:47–49.

    Article  CAS  Google Scholar 

  • Schopf, J. W., and Packer, B. M., 1987, Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia, Science 237:70–73.

    Article  CAS  Google Scholar 

  • Schopf, J. W., and Walter, M. R., 1983, Archean microfossils: New evidence of ancient microbes, in: Earth’s Earliest Biosphere: Its Origin and Evolution (J. W. Schopf, ed.), Princeton University Press, Princeton, New Jersey, pp. 214–239.

    Google Scholar 

  • Stanley, S. M., 1981, The New Evolutionary Timetable, Basic Books Inc., New York.

    Google Scholar 

  • Trask, P. D., and Patnode, H. W., 1942, Source Beds of Petroleum, American Association of Petroleum Geologists, Tulsa, Oklahoma.

    Google Scholar 

  • Trudinger, P. A., 1979, The biological sulfur cycle, in: Biogeochemical Cycling of Mineral-Forming Elements (D.J. Swaine and P. A. Trudinger, eds.), Elsevier, Amsterdam, pp. 293–313.

    Chapter  Google Scholar 

  • Trüper, H. G., 1982, Microbial processes in the sulfur cycle through time, in: Mineral Deposits and the Evolution of the Biosphere (H. D. Holland and M. Schidlowski, eds.), Springer-Verlag, Berlin, pp. 5–30.

    Chapter  Google Scholar 

  • Tyler, S. A., and Barghoorn, E. S., 1954, Occurrence of structurally preserved plants in pre-Cambrian rocks of the Canadian shield, Science 119:606–608.

    Article  CAS  Google Scholar 

  • Valley, J. W., and O’Neil, J. R., 1981, 13C/12C exchange between calcite and graphite: A possible thermometer in Grenville marbles, Geochim. Cosmochim. Acta 45:411–419.

    Article  CAS  Google Scholar 

  • Veizer, J., Holser, W. T., and Wilgus, C. K., 1980, Correlation of 13C/12C and 34S/32S secular variations, Geochim. Cosmochim. Acta 44:579–587.

    Article  CAS  Google Scholar 

  • Veizer, J., Compston, W., Hoefs, J., and Nielsen, H., 1982, Mantle buffering of the early oceans. Naturwissenschaften 69:173–180.

    Article  CAS  Google Scholar 

  • Vinogradov, V. I., Reimer, T. O., Leites, A. M., and Smelov, S. B., 1976, The oldest sulfates in Archaean formations of the South African and Aldan Shields and the evolution of the Earth’s oxygenic atmosphere, Lithol. Miner. Resour. (USSR) 11:407–420.

    Google Scholar 

  • Wada, H., and Suzuki, K., 1983, Carbon isotopic thermometry calibrated by dolomite-calcite solvus temperatures, Geochim. Cosmochim. Acta 47:697–706.

    Article  CAS  Google Scholar 

  • Walker, J. C. G., Klein, C., Schidlowski, M., Schopf, J. W., Stevenson, D. J., and Walter, M. R., 1983, Environmental evolution of the Archean-Early Proterozoic Earth, in: Earth’s Earliest Biosphere: Its Origin and Evolution (J. W Schopf, ed.), Princeton University Press, Princeton, New Jersey, pp. 260–290.

    Google Scholar 

  • Walsh, M. M., and Lowe, D. R., 1985, Filamentous microfossils from the 3,500-Myr-old Onverwacht Group, Barberton Mountain Land, South Africa, Nature 314:530–532.

    Article  Google Scholar 

  • Walter, M. R., 1977, Interpreting stromatolites, Am. Sci. 65:563–571.

    Google Scholar 

  • Walter, M. R., 1983, Archean stromatolites: Evidence of the Earth’s earliest benthos, in: Earth’s Earliest Biosphere: Its Origin and Evolution (J. W. Schopf, ed.), Princeton University Press, Princeton, New Jersey, pp. 187–213.

    Google Scholar 

  • Walter, M. R., Buick, R., and Dunlop, J. S. R., 1980, Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia, Nature 284:443–445.

    Article  Google Scholar 

  • Weber, F., Schidlowski, M., Arneth, J. D., and Gauthier-Lafaye, F., 1983, Carbon isotope geochemistry of the lower Proterozoic Francevillian Series of Gabon (Africa), Terra Cognita 3:220.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schidlowski, M. (1993). The Initiation of Biological Processes on Earth. In: Engel, M.H., Macko, S.A. (eds) Organic Geochemistry. Topics in Geobiology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2890-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2890-6_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6252-4

  • Online ISBN: 978-1-4615-2890-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics