Laboratory Simulation of Petroleum Formation

Hydrous Pyrolysis
  • M. D. Lewan
Part of the Topics in Geobiology book series (TGBI, volume 11)

Abstract

The importance of water in laboratory experiments designed to simulate natural processes is well documented in the studies of granite melts (Goranson, 1931, 1932; Tuttle and Bowen, 1958), metamorphic reactions (Winkler, 1974, p. 15; Rumble et al., 1982; Ferry, 1983), and coal formation (Berl and Schmidt, 1932; Schuhmacher et al., 1960). Industrial processes also benefit from the presence of water as demonstrated in oil shale retorting (Gavin, 1922, p. 181), conversion of coal to oil (Fischer, 1925, p. 180), heavy oil upgrading (McCollum and Quick, 1976a, b), and conversion of organic refuse to oil (Appell et al., 1971, 1975). Prior to 1979, organic geochemists inadvertently ignored these observations and the ubiquity of water in sedimentary basins when considering the natural process of petroleum generation. A notable exception is the work reported by Jurg and Eisma in 1964. Noting differences in the thermal decomposition of behenic acid in the presence and absence of liquid water, these investigators suggested that water played an important role in petroleum generation.

Keywords

Dust Steam Lignin Uranium Petrol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amestica, L. A., and Wolf, E. E., 1986, Catalytic liquefaction of coal with supercritical water/CO/solvent media, Fuel 65:1226.CrossRefGoogle Scholar
  2. Appell, H. R., Fu, Y. C., Friedman, S., Yavorsky, P. M., and Wender, I., 1971, Converting Organic Wastes to Oil: A Replenishable Energy Source, U.S. Department of the Interior, Bureau of Mines Rept. Invest. 7560.Google Scholar
  3. Appell, H. R., Fu, Y. C., Illig, E. G., Steffgen, F. W., and Miller, R. D., 1975, Conversion of Cellulosic Wastes to Oil, U.S. Department of the Interior, Bureau of Mines Rept. Invest. 8013.Google Scholar
  4. ASME, 1979, ASME Steam Tables—Thermodynamic and Transport Properties of Steam, American Society of Mechanical Engineers, New York.Google Scholar
  5. Berl, E., and Schmidt, A., 1932, Über die Entstehung der Kohlen, II. Die Inkohlung von Cellulose and Lignin in neutralem Medium, Ann. Chemie 493:97.CrossRefGoogle Scholar
  6. Bertrand, P., Martinez, L., and Pracher, B., 1987, Petrology Study of Primary Migration by Hydrous Pyrolysis, in: Migration of Hydrocarbons in Sedimentary Basins (B. Doligez, ed.), Editions Technip, Paris, pp. 633–647.Google Scholar
  7. Brooks, J. D., and Smith, J. W., 1969, The diagenesis of plant lipids during the formation of coal, petroleum, and natural gas—II. Coalification and the formation of oil and gas in the Gippsland Basin, Geochim. Cosmochim. Acta 33:1183.CrossRefGoogle Scholar
  8. Braun, R. L., and Rothman, A. J., 1975, Oil-shale pyrolysis: Kinetics and mechanisms of oil production, Fuel 54:129.CrossRefGoogle Scholar
  9. Burnham, A. K., Braum, R. L., Gregg, H. R., and Samoun, A. M., 1987a, Comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters, Energy Fuels 1:452.CrossRefGoogle Scholar
  10. Burnham, A. K., Braum, R. L., and Samoun, A., 1987b, Further Comparison of Methods for Measuring Kerogen Pyrolysis Rates and Fitting Kinetic Parameters, Lawrence Livermore National Laboratory, UCRL-97352.Google Scholar
  11. Claypool, G. E., and Reed, R. P., 1976, Thermal-analysis technique for source-rock evaluation: Quantitative estimate of organic richness and effects of lithology, Am. Assoc. Petrol. Geol. Bull. 60:608.Google Scholar
  12. Comet, P. A., McEvoy, J., Giger, W., and Douglas, A. G., 1986, Hydrous and anhydrous pyrolysis of DSDP Leg 75 kerogens— A comparative study using a biological marker approach, Org. Geochem. 9:171.CrossRefGoogle Scholar
  13. Dawidowicz, A. L., Nazimek, D., Pikus, S., and Skubiszewska, J., 1984, The influence of boron atoms on the surface of controlled porous glasses on the properties of the carbon deposit obtained by pyrolysis of alcohol, J. Anal. Appl. Pyrolysis 7:53.CrossRefGoogle Scholar
  14. Dawidowicz, A. L., Pikus, S., and Nazimek, D., 1986, Properties of the material surfaces obtained by pyrolysis of alkanols on boron-enriched controlled porous glasses, J. Anal. Appl. Pyrolysis 10:59.CrossRefGoogle Scholar
  15. Deshpande, G. V., Holder, G. D., Bishop, A. A., Gopal, J., and Wender, I., 1984, Extraction of coal using supercritical water, Fuel 63:956.CrossRefGoogle Scholar
  16. Eglinton, T. I., and Douglas, A. G., 1988, Quantitative study of biomarker hydrocarbons released from kerogens during hydrous pyrolysis, Energy Fuels 2:81.CrossRefGoogle Scholar
  17. Eglinton, T. I., Curtis, C. D., and Rowland, S. J., 1987, Generation of water-soluble organic acids from kerogen during hydrous pyrolysis: Implications for porosity development, Miner. Mag. 51:495.CrossRefGoogle Scholar
  18. Eglinton, T. I., Douglas, A. G., and Rowland, S. J., 1988, Release of aliphatic, aromatic, and sulfur compounds from Kimmeridge kerogen by hydrous pyrolysis: A quantitative study, Org. Geochem. 13:655.CrossRefGoogle Scholar
  19. Engler, K. O. V., 1913, Die Chemie und Physik des Erdöls, Vol. 1, S. Hirzel, Leipzig.Google Scholar
  20. Espitalié, J., Laporte, J. L., Madec, M., Marquis, F., Leplat, P., Paulet, J., and Boutefeu, A., 1977, Méthode rapide de caractérisation des roches mères de leur potential pétrolier et de leur degré d’évolution, Rev. Inst. Fr. Pet. 32:23.Google Scholar
  21. Ferry, J. M., 1983, Regional metamorphism of the Vassalboro Formation, south-central Maine, U.S.A.: A case study of the role of fluid in metamorphic pedogenesis, J. Geol. Soc. London 140:551.CrossRefGoogle Scholar
  22. Fischer, F., 1925, The Conversion of Coal into Oils, Ernest Benn Ltd., London.Google Scholar
  23. Franks, A. J., and Goodier, B. D., 1922, Preliminary study of the organic matter of Colorado Oil Shales, Quart. Colo. Sch. Mines 17:3.Google Scholar
  24. Gavin, M. J., 1922, Oil-shale: An historical, technical, and economic study, U.S. Department of the Interior, Bureau of Mines Bulletin 210, Bradford-Robinson, Denver.Google Scholar
  25. Goranson, R. W., 1931, The solubility of water in granite magmas, Am. J. Sci. 22:481.CrossRefGoogle Scholar
  26. Goranson, R. W., 1932, Some notes on the melting of granite, Am. J. Sci. 23:227.CrossRefGoogle Scholar
  27. Haas, J. L., Jr., 1976, Thermodynamical properties of the NaCl component in boiling NaCl solutions, U.S. Geological Survey Bulletin 1421-B.Google Scholar
  28. Harwood, R. J., 1977, Oil and gas generation by laboratory pyrolysis of kerogen, Am. Assoc. Petrol. Geol. Bull. 61:2082.Google Scholar
  29. Hoering, T. C., 1977, Olefinic hydrocarbons in Bradford, Pennsylvania, crude oil, Chem. Geol. 20:1.CrossRefGoogle Scholar
  30. Hoering, T. C., 1985, Thermal reactions of kerogen with added water, heavy water, and pure organic substances, Org. Geo-chem. 5:267.CrossRefGoogle Scholar
  31. Houser, T. J., Tiffany, D. M., Li, Z., McCarville, M. E., and Houghton, M. E., 1986, Reactivity of some organic compounds with supercritical water, Fuel 65:827.CrossRefGoogle Scholar
  32. Hubbard, A. B., and Robinson, W. E., 1950, A Thermal Decomposition Study of Colorado Oil Shale, U.S. Department of the Interior, Bureau of Mines Rept. Invest. 4744.Google Scholar
  33. Huizinga, B. J., Tannenbaum, E., and Kaplan, I. R., 1987, The role of minerals in the thermal alteration of organic matter—IV. Generation of n-alkanes, acyclic isoprenoids, and alkenes in laboratory experiments, Geochim. Cosmochim. Acta 51:1083.CrossRefGoogle Scholar
  34. Hunt, J. M., 1979, Petroleum Geochemistry and Geology, W. H. Freeman and Co., San Francisco.Google Scholar
  35. Jones, M., Douglas, A. G., and Connan, J., 1987, Hydrocarbon distributions in crude oil asphaltene pyrolyzates. 1. Aliphatic compounds, Energy Fuels 1:468.CrossRefGoogle Scholar
  36. Jurg, J. W., and Eisma, E., 1964, Petroleum hydrocarbons: Generation from fatty acid, Science 144:1451.CrossRefGoogle Scholar
  37. King, R. J., 1983, Steel, in: Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 21, John Wiley & Sons, New York, pp. 552–625.Google Scholar
  38. Kisch, H. J., 1987, Correlation between indicators of very low-grade metamorphism, in: Low Temperature Metamorphism (M. Frey, ed.), Blackie, Glasgow, pp. 227–300.Google Scholar
  39. Larter, S. R., and Douglas, A. G., 1980, A pyrolysis-gas chromatographic method for kerogen typing, in: Advances in Organic Geochemistry 1979 (A. G. Douglas and J. R. Maxwell, eds.), Pergamon Press, Oxford, pp. 579–584.Google Scholar
  40. Larter, S. R., and Senftle, J. T., 1985, Improved kerogen typing for petroleum source rock analysis, Nature 318:277.CrossRefGoogle Scholar
  41. Larter, S. R., Horsfield, B., and Douglas, A. G., 1977, Pyrolysis as a possible means of determining petroleum generating potential of sedimentary organic matter, in: Analytical Pyrolysis (C. E. R. Jones and C. A. Cramers, eds.), Elsevier, Amsterdam, pp. 189–202.CrossRefGoogle Scholar
  42. Lewan, M. D., 1978, Laboratory classification of very fine-grained sedimentary rocks, Geology 6:745.CrossRefGoogle Scholar
  43. Lewan, M. D., 1983, Effects of thermal maturation on stable organic carbon isotopes as determined by hydrous pyrolysis of Woodford Shale, Geochim. Cosmochim. Acta 47:1471.CrossRefGoogle Scholar
  44. Lewan, M. D., 1985, Evaluation of petroleum generation by hydrous pyrolysis experimentation, Philos. Trans. R. Soc. London Ser. A 315:123.CrossRefGoogle Scholar
  45. Lewan, M. D., 1987, Petrographic study of primary petroleum migration in the Woodford Shale and related rock units, in: Migration of Hydrocarbons in Sedimentary Basins (B. Doligez, ed.), Editions Technip, Paris, pp. 113–130.Google Scholar
  46. Lewan, M. D., and Buchardt, B., 1989, Irradiation of organic matter by uranium decay in the Alum Shale, Sweden, Geochim. Cosmochim. Acta 53:1307.CrossRefGoogle Scholar
  47. Lewan, M. D., and Williams, M. D., 1987, Evaluation of petroleum generation from resinites by hydrous pyrolysis, Am. Assoc. Petrol Geol. Bull. 71:207.Google Scholar
  48. Lewan, M. D., Winters, J. C., and McDonald, J. H., 1979, Generation of oil-like pyrolyzates from organic-rich shales, Science 203:897.CrossRefGoogle Scholar
  49. Lewan, M. D., Bjorøy, M., and Dolcater, D. L., 1986, Effects of thermal maturation on steroid hydrocarbons as determined by hydrous pyrolysis of Phosphoria Retort Shale, Geochim. Cosmochim. Acta 50:1977.CrossRefGoogle Scholar
  50. Louis, M. C., and Tissot, B. P., 1967, Influence de la température et de la pression sur la formation des hydrocarbures dans les argiles à kérogen, Proceedings of the 7th World Petroleum Congress, Vol. 2, Elsevier, Amsterdam, p. 47.Google Scholar
  51. Lundegard, P. D., and Senftle, J. T., 1987, Hydrous pyrolysis: A tool for the study of organic acid synthesis, Appl. Geochem. 2:605.CrossRefGoogle Scholar
  52. McCollum, J. D., and Quick, L. M., 1976a, Process for upgrading a hydrocarbon fraction, U.S. Patent 3,960,708.Google Scholar
  53. McCollum, J. D., and Quick, L. M., 1976b, Process for upgrading a hydrocarbon fraction, U.S. Patent 3,989,618.Google Scholar
  54. McKee, R. H., and Lyder, E. E., 1921, The thermal decomposition of shales. I—Heat effects, J. Ind. Eng. Chem. 13:613.CrossRefGoogle Scholar
  55. Meissner, F. F., 1978, Petroleum geology of the Bakken Formation, Williston Basin, in: Williston Basin Symposium, Montana Geological Society 24th Annual Conference, pp. 207–227.Google Scholar
  56. Monthioux, M., 1988, Expected mechanisms in nature and in confined-system pyrolysis, Fuel 67:843.CrossRefGoogle Scholar
  57. Monthioux, M., Landais, P., and Monin, J.-C., 1985, Comparison between natural and artificial maturation series of humic coals from the Mahakam delta, Indonesia, Org. Geochem. 8:275.CrossRefGoogle Scholar
  58. Murakami, K., Yokono, T., and Sanada, Y., 1986, An investigation of the role of hydrogen sulfide in coal liquefaction catalysis by high-temperature and high-pressure e.s.r., Fuel 65:1079.CrossRefGoogle Scholar
  59. Palmer, D. A., and Drummond, S. E., 1986, Thermal decarboxylation of acetate. Part I. The kinetics and mechanism of reaction in aqueous solution, Geochim. Cosmochim. Acta 50:813.CrossRefGoogle Scholar
  60. Pollard, D. D., and Aydin, A., 1988, Progress in understanding jointing over the past century, Geol. Soc. Am. Bull. 100:1181.CrossRefGoogle Scholar
  61. Rullkötter, J., Aizenshtat, Z., and Spiro, B., 1984, Biological markers in bitumens and pyrolzates of Upper Cretaceous bituminous chalks from the Ghareb Formation (Israel), Geochim. Cosmochim. Acta 48:151.CrossRefGoogle Scholar
  62. Rumble, D., III, Ferry, J. M., Hoering, T. C., and Boucot, A. J., 1982, Fluid flow during metamorphism at the Beaver Brook fossil locality, New Hampshire, Am. J. Sci. 282:886.CrossRefGoogle Scholar
  63. Saxby, J. D., and Riley, K. W., 1984, Petroleum generation by laboratory scale pyrolysis over six years simulating conditions in a subsiding basin, Nature 308:177.CrossRefGoogle Scholar
  64. Saxby, J. D., Bennett, A. J. R., Corcoran, J. F., Lambert, D. E., and Riley, K. W., 1986, Petroleum generation: Simulation over six years of hydrocarbon formation from torbanite and brown coal in a subsiding basin, Org. Geochem. 9:69.CrossRefGoogle Scholar
  65. Schuhmacher, J. P., Huntjens, F. J., and van Krevelen, D. W., 1960, Chemical structure and properties of coal XXVI. Studies on artificial coalification, Fuel 39:223.Google Scholar
  66. Soldan, A. L., and Cerqueira, J. R., 1986, Effects of thermal maturation on geochemical parameters obtained by simulated generation of hydrocarbons, Org. Geochem. 10:339.CrossRefGoogle Scholar
  67. Sourirajan, S., and Kennedy, G. C., 1962, The system H2O-NaCl at elevated temperatures and pressures, Am. J. Sci. 260:115.CrossRefGoogle Scholar
  68. Srinivasan, G., and Seehra, M. S., 1982, Changes in free radicals in coal-derived pyrites upon heating in N2, H2, and vacuum: Role of pyrite-pyrrhotite conversion, Fuel 61:1249.CrossRefGoogle Scholar
  69. Srinivasan, G., and Seehra, M. S., 1983, Effects of pyrite and pyrrhotite on free radical formation in coal, Fuel 62:792.CrossRefGoogle Scholar
  70. Stanley, J. K., 1970, The carburization of four austenitic stainless steels, J. Matter 5:957.Google Scholar
  71. Takenouchi, S., and Kennedy, G. C., 1964, The binary system H2O-CO2 at high temperatures and pressures, Am. J. Sci. 262:1055CrossRefGoogle Scholar
  72. Talukdar, S., Gallango, O., Vallejas, C., and Ruggiero, A., 1987, Observations on the primary migration of oil in the LaLuna Source rocks of the Marracaibo Basin, Venezuela, in: Migration of Hydrocarbons in Sedimentary Basis (B. Doligez, ed.), Editions Technip, Paris, pp. 59–77.Google Scholar
  73. Tannenbaum, E., and Kaplan, I. R., 1985a, Role of minerals in the thermal alteration of organic matter—I: Generation of gases and condensates under dry conditions, Geochim. Cosmochim. Acta 49:2589.CrossRefGoogle Scholar
  74. Tannenbaum, E., and Kaplan, I. R., 1985b, Low-Mr hydrocarbons generated during hydrous and dry pyrolysis of Kerogen, Nature 317:708CrossRefGoogle Scholar
  75. Tannenbaum, E., Huizinga, B. J., and Kaplan, I. R., 1986 Role of minerals in thermal alteration of organic matter—II: A material balance, Am. Assoc. Petrol. Geol. Bull. 70:1156.Google Scholar
  76. Tissot, B. P., and Welte, D. H., 1978, Petroleum Formation and Occurrence, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  77. Tissot, B., Durand, B., Espitalié, J., and Combaz, A., 1974, Influence of nature and diagenesis of organic matter in formation of petroleum, Am. Assoc. Petrol. Geol. Bull. 58:499.Google Scholar
  78. Tuttle, O. F., and Bowen, N. L., 1958, Origin of granite in the light of experimental studies in the system NaAl Si3O8-KAlSi3O8-SiO2-H2O, Geol. Soc. Am. Mem. 7474.Google Scholar
  79. Winkler, H. G. F., 1974, Petrogenesis of Metamorphic Rocks, 3rd ed., Springer-Verlag, New York.CrossRefGoogle Scholar
  80. Winters, J. C., Williams, J. A., and Lewan, M. D., 1983, A laboratory study of petroleum generation by hydrous pyrolysis, in: Advances in Organic Geochemistry 1981 (M. Bjorøy, ed.), John Wiley & Sons, New York, pp. 524–533.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • M. D. Lewan
    • 1
  1. 1.Amoco Production Company, Research CenterTulsaUSA

Personalised recommendations