Skip to main content

Determination of Structural Components of Kerogens by the Use of Analytical Pyrolysis Methods

  • Chapter

Part of the book series: Topics in Geobiology ((TGBI,volume 11))

Abstract

Kerogen, defined as organic material in sedimentary rocks that is insoluble in common organic solvents, alkali, and nonoxidizing acids, represents the major organic carbon reservoir in the Earth’s crust. The chemical composition of kerogen is a complex function of its biochemical source-related mechanical composition (macerai composition) and diagenetic modification (both facies related) and its degree of thermal evolution (maturity level). Bulk chemical analysis has been most useful in providing generalized chemical descriptions of kerogens. However, the detailed molecular configuration of a kerogen cannot be obtained from its bulk chemistry due to the isomeric complexity possible with high-molecularweight macromolecules. Many sophisticated chemical degradation (including pyrolysis) and spectroscopic techniques have therefore been applied to the structural characterization of kerogen (see Durand, 1980). Some of the techniques most commonly applied today are those involving analytical pyrolysis methods, and it is those we discuss here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan, J., 1975, Natural and artificial diagenesis of coal macerals, Ph.D. Thesis, University of Newcastle upon Tyne.

    Google Scholar 

  • Allan, J., and Larter, S. R., 1983, Aromatic structures in coal maceral extract and kerogens, in: Advances in Organic Geochemistry 1981 (M. Bjorøy et al., eds.), Wiley Heyden, London, pp. 534–545.

    Google Scholar 

  • Allan, J., Bjorøy, M., and Douglas, A. G., 1980, A geochemical study of the exinite group maceral alginite, selected from three Permo-Carboniferous torbanites, in: Advances in Organic Geochemistry 1979 (A. G. Douglas and J. R. Maxwell, eds.), Per-gamon Press, Oxford, pp. 239–248.

    Google Scholar 

  • Barwise, A. J. G., Mann, A. L., Eglinton, G., Goward, A. P., Ward-roper, A. M. K., and Gutteridge, C. S., 1984, Kerogen characterisation by 13C NMR spectroscopy and pyrolysis mass-spectrometry, in: Advances in Organic Geochemistry 1983 (P. A. Schenck, et al., eds.), Pergamon Press, Oxford, pp. 343–349.

    Google Scholar 

  • Baset, Z. H., Pancirov, R. J., and Ashe, T. R., 1980, Organic compounds in coal: Structure and origin, in: Advances in Organic Geochemistry 1979 (A. G. Douglas and J. R. Maxwell, eds.), Pergamon Press, Oxford, pp. 619–630.

    Google Scholar 

  • Behar, F., and Pelet, R., 1985, Pyrolysis gas chromatography applied to organic geochemistry. Structural similarities between kerogens and asphaltenes from related source rocks extracts and oils, J. Anal. Appl. Pyrolysis 8:173–187.

    Article  CAS  Google Scholar 

  • Bharati, S., Larter, S. R., and Horsfield, B., 1992, The unusual source potential of the Cambrian Alum Shale in Scandinavia as determined by quantitative pyrolysis methods, in: Generation, Accumulation and Production of Europe’s Hydrocarbons II, (A. M. Spencer, ed.), Special Publication of the European Association of Petroleum Geochemists No. 2, Springer-Verlag Berlin, Heidelberg, pp. 103–110.

    Google Scholar 

  • Burlingame, A. L., and Simoneit, B. R., 1969, High resolution mass spectometry of Green River Formation kerogen oxidations, Nature 222:741–747.

    Article  CAS  Google Scholar 

  • Burnham, A. K., 199, On the validity of the pristane formation index, Geochim. Cosmochim. Acta 53:1693–1697.

    Google Scholar 

  • Burnham, A. K., Clarkson, J. E., Singleton, M. F., Wong, C. M., and Crawford, R. W., 1982, Biological markers from Green River Shale kerogen decomposition, Geochim. Cosmochim. Acta 46:1243–1251.

    Article  CAS  Google Scholar 

  • Cooles, G. P., Mackenzie, A. S., and Quigley, T. M., 1986, Calculation of petroleum masses generated and expelled from source rocks, in: Advances in Organic Geochemistry 1985 (D. Leyt-haeuser and J. Rullkotter, eds.), Pergamon Press, Oxford, pp. 235–245.

    Google Scholar 

  • Curry, D. J., and Simpler, T. K., 1988, Isoprenoid constituents in kerogens as a function of depositional environment and catagenesis, in: Advances in Organic Geochemistry 1987 (L. Matta-velli and L. Novelli, eds.), Pergamon Press, Oxford, pp. 995–1001.

    Google Scholar 

  • Dembicki, H., Horsfield, B., and Ho, T. T. Y., 1983, Sources rock evaluation by pyrolysis gas chromatography, Bull. Am. Assoc. Petrol Geol. 67:1094–1103.

    CAS  Google Scholar 

  • Deno, N. C., Greigger, B. A., and Stroud, S. G., 1978, New method for elucidating the structures of coal, Fuel 57:455–459.

    Article  CAS  Google Scholar 

  • Derenne, S., Largeau, C., Casadevall, E., and Laupretre, F., 1987, Structural analysis of two torbanites at different evolutionary stages. Investigation of the quantitative reliability of f a determination by 13C CP/MAS n.m.r., Fuel 66:1084–1090.

    Article  CAS  Google Scholar 

  • Derenne, S., Largeau, C., Casadevall, E., and Connan, J., 1988, Comparison of torbanites of various origins and evolutionary stages. Bacterial contribution to their formation. Cause of the lack of botryococcane in bitumens, Org. Geochem. 12:43–59.

    Article  CAS  Google Scholar 

  • Dereppe, J. M., Boudon, J. P., Moreaux, C., and Durand, B., 1983, Structural evolution of a sedimentologically homogeneous coal series as a function of carbon content by solid state 13-C n.m.r., Fuel 62:575–579.

    Article  CAS  Google Scholar 

  • Dungworth, G., and Schwartz, A. W., 1972, Kerogen isolates from the Precambrian of South Africa and Australia, in: Advances in Organic Geochemistry 1971 (H. R. V. Gaertner and H. Wehner, eds.), Pergamon Press, Oxford, pp. 699–706.

    Google Scholar 

  • Durand, B., 1980, Kerogen—Insoluble Organic Matter from Sedimentary Rocks, Editions Technip, Paris.

    Google Scholar 

  • Eglinton, T. I., 1988, An investigation of kerogens using pyrolysis methods, Ph.D. Thesis, University of Newcastle Upon Tyne.

    Google Scholar 

  • Eglinton, T. I., Philp, R. P., and Rowland, S. J., 1988, Flash pyrolysis of artificially matured kerogens from the Kimmeridge Clay Fm., UK, Org. Geochem. 12:33–41.

    Article  CAS  Google Scholar 

  • Eglinton, T. I., Sinninghe Damste, J. S., Kohnen, M. E. L., de Leeuw, J. W., Larter, S. R., Thatcher, M., and Patience, R. S., 1990, Analysis of maturity related trends in the organic sulphur composition of kerogens by flash pyrolysis gas-chromatogra-phy, in: Geochemistry of Sulphur in Fossil Fuels (W. L. Orr and C. M. White, eds.), ACS Symposium Series, American Chemical Society, Washington, D.C., pp. 471–493.

    Google Scholar 

  • England, W. A., and Mackenzie, A. S., 1989, Some aspects of the organic geochemistry of petroleum fluids, Geol. Rundsch. 78/1:291–303.

    Article  Google Scholar 

  • England, W. A., Mackenzie, A. S., Mann, D. M., and Quigley, T. M., 1987, The movement and entrapment of petroleum fluids in the subsurface, J. Geol. Soc. 144:327–347.

    Article  CAS  Google Scholar 

  • Gallegos, E. J., 1975, Terpane and sterane release from kerogen by pyrolysis gas chromatography mass spectrometry, Anal. Chem. 47:1524–1528.

    Article  CAS  Google Scholar 

  • Gallegos, E. J., 1978, Analysis of five US coals. Pyrolysis gas chromatography mass spectrometry computer methods, in: ACS Advances in Chemistry Series No. 170 (P. C. Uden, S. Siggia, and H. G. Jensen, eds.), American Chemical Society, Washington, D.C., p. 236.

    Google Scholar 

  • Giraud, A., 1970, Application of pyrolysis and pyrolysis gas chromatography to the geochemical characterisation of kerogen in sedimentary rocks, Bull. Am. Assoc. Petrol. Geol. 54:439–455.

    CAS  Google Scholar 

  • Given, P. H., 1984, An essay on the organic geochemistry of coal, in: Coal Science (M. L. Gorbaty et al., eds.), Vol. 3, Academic Press, New York, pp. 63–251.

    Google Scholar 

  • Goossens, H., de Leeuw, J. W., Schenck, P. A., and Brassell, S. C., 1984, Tocopherols as likely precursors of pristane in ancient sediments, Nature 312:440–442.

    Article  CAS  Google Scholar 

  • Goossens, H., de Lange, F., de Leeuw, T. W., and Schenck, P. A., 1988, The Pristane Formation Index, a molecular maturity parameter. Confirmation in samples from the Paris Basin, Geochim. Cosmochim. Acta 52:2439–2444.

    Article  CAS  Google Scholar 

  • Goth, K., de Leeuw, J. W., Püttmann, W., and Tegelaar, E. W., 1988, Origin of Messel Oil Shale, Nature 336:759–761.

    Article  CAS  Google Scholar 

  • Hatcher, P. G., Lerch, H. E., Kotra, R. K., and Verheyen, T. V., 1988, Pyrolysis-gc-ms of degraded woods and coalified logs that increase in rank from peat to subbituminous coal, Fuel 67: 1069–1075.

    Article  CAS  Google Scholar 

  • Horsfield, B., 1984, Pyrolysis studies and petroleum exploration, in: Advances in Petroleum Geochemistry (J. Brooks and D. H. Welte, eds.), Vol. I, Academic Press, London, pp. 247–292.

    Google Scholar 

  • Horsfield, B., 1989, Practical criteria for classifying kerogens: Some observations from pyrolysis-gas chromatography, Geochim. Cosmochim. Acta 53:891–901.

    Article  CAS  Google Scholar 

  • Horsfield, B., and Larter, S. R., 1981, Unpublished round robin analytical pyrolysis study.

    Google Scholar 

  • Horsfield, B., and Larter, S. R., 1989, Practical kerogen typing for petroleum exploration, American Association of Petroleum Geologists Annual Meeting 73:3, 151.

    Google Scholar 

  • Horsfield, B., Dembicki, H., and Ho, T. T. Y., 1983, Some potential applications of pyrolysis to basin studies, J. Geol Soc. London 140:431–443.

    Article  CAS  Google Scholar 

  • Horsfield, B., Yordy, K. L., and Crelling, J. C., 1988, Determining the petroleum generating potential of coal using organic geochemistry and organic petrology, in: Advances in Organic Geochemistry 1987 (L. Mattavelli, and L. Novelli, eds.), Pergamon Press, Oxford, pp. 121–131.

    Google Scholar 

  • Horsfield, B., Disko, U., and Leistner, F., 1989, The microscale simulation of maturation: Outline of a new technique and its potential applications, Geol. Rundsch. 78:361–373.

    Article  CAS  Google Scholar 

  • Horsfield, B., Bharati, S., Larter, S. R., Leistner, F., Littke, R., Mann, U., Schenk, H. J., and Dypvik, H., 1992, On the atpyical petroleum generating characteristics of alginite in the Cambrian Alum Shale, in: Early Organic Evolution: Implications for Mineral and Energy Resources (M. Schidlowski et al., ed.), Springer-Verlag, Berlin, Heidelberg, pp. 257–266.

    Chapter  Google Scholar 

  • Hutton, A. C., Kantsler, A. J., Cook, A. C., and McKirdy, D. M., 1980, Organic matter in oil shales, J. Aust. Petrol. Explor. Assoc. 20: 68–86.

    Google Scholar 

  • Jackson, K. S., McKirdy, D. M., and Deckelmann, J. A., 1984, Hydrocarbon generation in the Amadeus Basin, Central Australia, APEA J. 24:43–65.

    Google Scholar 

  • Largeau, C., Casadevall, E., Kadouri, A., and Metzger, P., 1984, Formation of Botryococcus derived kerogens: Comparative study of immature torbanites and of the extant alga Botryococcus braunii, in: Advances in Organic Geochemistry 1983 (P. A. Schenck, J. W. de Leeuw, and G. W. M. Lijmbach, eds.), Pergamon Press, Oxford, pp. 327–332.

    Google Scholar 

  • Largeau, C., Derenne, S., Casadevall, E., Kadouri, A., and Sellier, N., 1986, Pyrolysis of immature torbanite and of the resistant biopolymer (PRBA) isolated from extant alga Botryococcus braunii. Mechanism of formation and structure of torbanite, in: Advances in Organic Geochemistry 1985 (D. Leythaeuser and J. Rullkötter, eds.), Pergamon Press, Oxford, pp. 1023–1032.

    Google Scholar 

  • Larter, S. R., 1978, A geochemical study of kerogens and related material, Ph.D. Thesis, University of Newcastle upon Tyne.

    Google Scholar 

  • Larter, S. R., 1984, Application of analytical pyrolysis techniques to kerogen characterisation and fossil fuel exploration/exploitation, in: Analytical Pyrolysis Methods and Applications (K. Voorhees, ed.), Butterworths, London, pp. 212–275.

    Google Scholar 

  • Larter, S. R., 1985, Integrated kerogen typing in the recognition and quantitative assessment of petroleum source rocks, in: Petroleum Geochemistry in Exploration of the Norwegian Shelf (B. M. Thomas et al., eds.), Graham and Trotman, London, pp. 269–286.

    Chapter  Google Scholar 

  • Larter, S. R., 1989, Chemical models of vitrinite reflectance evolution, Geol. Rundsch. 78/1:349–359.

    Article  Google Scholar 

  • Larter, S. R., and Douglas, A. G., 1978, Low molecular weight aromatic hydrocarbons in coal macerai pyrolysates as indicators of diagenesis and organic matter type, in: Environmental Biogeochemistry and Geomicrobiology, Vol. 1 (W. Krumbein, ed.), Ann Arbor Science Publishers Inc., Ann Arbor, Michigan, pp. 373–386.

    Google Scholar 

  • Larter, S. R., and Douglas, A. G., 1980a, Melanoidins—kerogen precursors and geochemical lipid sinks: A study using pyroly-sis-gas chromatography (Py-GC), Geochim. Cosmochim. Acta 44:2087–2095.

    Article  CAS  Google Scholar 

  • Larter, S. R., and Douglas, A. G., 1980b, A pyrolysis-gas chromatographic method for kerogen typing, in: Advances in Organic Geochemistry 1979 (A. G. Douglas and J. R. Maxwell, eds.), Pergamon Press, Oxford, pp. 579–584.

    Google Scholar 

  • Larter, S. R., and Douglas, A. G., 1982, Pyrolysis methods in organic geochemistry. An overview, J. Anal. Appl. Pyroiysis 4:1–19.

    Article  CAS  Google Scholar 

  • Larter, S. R., and Senftle, J., 1985, Improved kerogen typing for petroleum source rock analysis, Nature 318:277–280.

    Article  CAS  Google Scholar 

  • Larter, S. R., Solli, H., and Douglas, A. G., 1978, Analysis of kerogens by pyrolysis-gas chromatography mass spectrometry using selective ion detection, J. Chromatogr. 167:421–431.

    Article  CAS  Google Scholar 

  • Larter, S. R., Solli, H., Douglas, A. G., De Lange, F., and de Leeuw, J. W., 1979, The occurrence and significance of prist-1-ene in kerogen pyrolysates, Nature 279:405–408.

    Article  CAS  Google Scholar 

  • Larter, S. R., Solli, H., and Douglas, A. G., 1983, Phytol containing melanoidins and their bearing on the fate of isoprenoid structures in sediments, in: Advances in Organic Geochemistry 1981 (M. Bjorøy et al., eds.), John Wiley, Chichester, England, pp. 513–521.

    Google Scholar 

  • Leplat, P., 1967, Application of pyrolysis gas chromatography to the study of non-volatile petroleum fractions, J. G.C. 1967(March):128–135.

    Google Scholar 

  • Maters, W. L., Van De Meent, D., Schuyl, P. J. W., de Leeuw, J. W., and Schenck, P. A., 1977, Curie-point pyrolysis in organic geochemistry, in: Analytical Pyrolysis ( Jones and Cramer, eds.), Elsevier, Amsterdam, pp. 203–216.

    Chapter  Google Scholar 

  • McHugh, D. J., Saxby, J. D., and Tardif, J. W., 1976, Pyrolysis hydrogenation gas chromatography of carbonaceous material from Australian sediments. Part I. Some Australian coals, Chem. Geol. 17:243–259.

    Article  CAS  Google Scholar 

  • McKirdy, D. M., and Hahn, J. H., 1982, The composition and kerogen and hydrocarbons in Precambrian rocks, in: Mineral Deposits and the Evolution of the Biosphere (H. D. Holland and M. Sckidlowski, eds.), Springer-Verlag, pp. 123–154.

    Google Scholar 

  • McKirdy, D. M., McHugh, D. J., and Tardif, J. W., 1980, Comparative analysis of stromatolitic and other microbial kerogens by pyrolysis-hydrogenation gas chromatography (PHGC), in: Biogeochemistry of Ancient and Modern Environments (P. A. Trudinger, M. R. Walter, and B. J. Ralph, eds.), Australian Academy of Sciences and Springer-Verlag, Berlin, Heidelberg, pp. 187–200.

    Chapter  Google Scholar 

  • Meuzelaar, H. L. C., Haverkamp, J., and Hileman, F. D. (eds.), 1982, Py-MS of Recent and Fossil Biomaterials Compendium and Atlas, Elsevier, Amsterdam.

    Google Scholar 

  • Miknis, F. P., Smith, J. W., Maughan, E. K., and Maciel, G. E., 1982, Nuclear magnetic resonance: A technique for direct non-destructive evaluation of source rock potential, Am. Assoc. Petrol. Geol. Bull. 66:1396–1401.

    CAS  Google Scholar 

  • Nip, M., Tegelaar, E. W., Brinkhuis, H., de Leeuw, J. W., Schenck, P. A., and Halloway, P. J., 1986, Analysis of modern and fossil plant cuticles by Curie-point Py-GC and Curie-point Py-GC-MS: Recognition of a new, highly aliphatic and resistant bio-polymer, in: Advances in Organic Geochemistry 1985 (D. Leythaeuser and J. Rullkötter, eds.), Pergamon Press, Oxford, pp. 769–778.

    Google Scholar 

  • Øygard, K., Larter, S. R., and Senftle, J. T., 1989, The control of maturity and kerogen type on analytical pyrolysis data, in: Advances in Organic Geochemistry 1987 (L. Mattavelli and M. Novelli, eds.), Pergamon Press, Oxford, pp. 1153–1162.

    Google Scholar 

  • Pelet, R., Behar, F., and Monin, J. C., 1986, Resins and asphaltenes in the generation and migration of petroleum, in: Advances in Organic Geochemistry 1985 (D. Leythaeuser and J. Rullkötter, eds.), Pergamon Press, Oxford, pp. 481–498.

    Google Scholar 

  • Philp, R. P., 1982, Application of pyrolysis-GC and pyrolysis-GC-MS to fossil fuel research, Trends Anal. Chem. 1 10:237–241.

    Article  Google Scholar 

  • Philp, R. P., and Calvin, M., 1976, Possible origin for insoluble organic kerogen debris in sediments from insoluble wall materials of algae and bacteria, Nature 262:134–136.

    Article  CAS  Google Scholar 

  • Philp, R. P., and Gilbert, T. D., 1985, Source rock and asphaltene biomarker characterisation by pyrolysis-gas chromatography-mass spectrometry multiple ion detection, Geochim. Cosmochim. Acta 49:1421–1432.

    Article  CAS  Google Scholar 

  • Philp, R. P., Gilbert, T. D., and Russell, N. J., 1982a, Characterisation by pyrolysis gas chromatography mass spectrometry of the insoluble organic residues derived from hydrogenation of Tas-manites sp. oil shale, Fuel 61:221–237.

    Article  CAS  Google Scholar 

  • Philp, R. P., Russell, N. J., Gilbert, T. D., and Friedrich, J. M. 1982b, Characterisation of Victoria Brown Coal wood by microscopic techniques and Curie-point pyrolysis combined with gas chromatography mass spectrometry, J. Anal. Appl. Pyrolysis 4: 143–161.

    Article  CAS  Google Scholar 

  • Reed, J. D., Illich, H. A., and Horsfield, B., 1986, Biochemical evolutionary significance of Ordovician oils and their sources, in: Advances in Organic Geochemistry 1985 (D. Leythaeuser and J. Rullkötter, eds.), Pergamon Press, Oxford, pp. 347–358.

    Google Scholar 

  • Romovacek, J., and Kubat, J., 1968, Characterisation of coal substance by pyrolysis-gas chromatography, Anal. Chem. 40: 1119–1127.

    Article  CAS  Google Scholar 

  • Rouxhet, P. G., and Robin, P. L., 1978, Infrared study of the evolution of kerogens of different origins during catagenesis and pyrolysis, Fuel 57:533–540.

    Article  CAS  Google Scholar 

  • Saiz-Jimenez, C., and de Leeuw, J. W., 1984, Pyrolysis gas chromatography mass spectrometry of isolated, synthetic and degraded lignins, in: Advances in Organic Geochemistry 1983 (P. A. Schenck et al., eds.), Pergamon Press, Oxford, pp. 417–422.

    Google Scholar 

  • Saxby, J. D., and Stephenson, L. C., 1987, Effect on an igneous intrusion on oil shale at Rundle (Australia), Chem. Geol. 63: 103–116.

    Article  Google Scholar 

  • Schenck, P. A., de Leeuw, J., van Graas, J. W., Haverkamp, J., and Bouman, M., 1981, Analysis of Recent spores and pollen and of thermally altered sporopollenin by flash pyrolysis-mass spectrometry and flash pyrolysis-gas chromatography-mass spectrometry, in: Organic Maturation Studies and Fossil Fuel Expioration (J. Brooks, ed.), Academic Press, New York, pp. 225–237.

    Google Scholar 

  • Schulten, H. R., and Gortz, W., 1978, Curie-point pyrolysis and field ionisation mass spectrometry of polysaccharides, Anal. Chem. 50:428–433.

    Article  CAS  Google Scholar 

  • Senftle, J. T., Larter, S. R., Bromley, B. W., and Brown, J. B., 1986, Quantitative chemical characterization of vitrinite concentrates using pyrolysis-gas chromatography. Rank variation of pyrolysis products, Org. Geochem. 9:345–350.

    Article  CAS  Google Scholar 

  • Senftle, J. T., Brown, J. B., and Larter, S. R., 1987, Refinement of organic petrographic methods for kerogen characterisation, Int. J. Coal Geol. 7:105–117.

    Article  CAS  Google Scholar 

  • Siefert, W. K., 1978, Steranes and terpanes in kerogen pyrolysis for correlation of oils and source rocks, Geochim. Cosmochim. Acta 42:473–484.

    Article  Google Scholar 

  • Sinninghe-Damsté, J. S., Eglinton, T. I., de Leeuw, J. W., and Schenck, P. A., 1989, Organic sulphur in macromolecular sedimentary organic matter. I. Structure and origin of sulphur containing moieties in kerogen, asphaltenes and coal as revealed by flash pyrolysis, Geochim. Cosmochim. Acta 53: 873–889.

    Article  Google Scholar 

  • Snowdon, L. R., 1980, Resinite: A potential petroleum source in the Upper Cretaceous/Tertiary of the Beaufort Mackenzie Basin, Can. Soc. Petrol. Geol. Mem. 6:509–521.

    Google Scholar 

  • Snowdon, L. R., and Powell, J. G., 1982, Immature oil and condensate: Modification of hydrocarbon generation model for terrestrial organic matter, Am. Assoc. Petrol. Geol. Bull. 66:775–788.

    CAS  Google Scholar 

  • Solli, H., Larter, S. R., and Douglas, A. G., 1980a, Analysis of kerogens by pyrolysis-gas chromatography mass spectrometry using selective ion detection. Part II. Alkylnaphthalenes, J. Anal. Appl. Pyrolysis 1:231–241.

    Article  CAS  Google Scholar 

  • Solli, H., Larter, S. R., and Douglas, A. G., 1980b, Analysis of kerogens by pyrolysis-gas chromatography mass spectrometry using selective ion detection. Part III. Long chain alkyl-benzenes, in: Advances in Organic Geochemistry 1979 (A. G. Douglas and J. R. Maxwell, eds.), Pergamon Press, Oxford, pp. 591–597.

    Google Scholar 

  • Stefanovic, G., and Vitorovic, D., 1959, Nature of oil shale kerogen, J. Chem. Eng. Data 4:162–167.

    Article  CAS  Google Scholar 

  • Takeda, N., and Asakawa, T., 1988, Study of petroleum generation by pyrolysis I. Pyrolysis experiments by Rock Eval and assumption of molecular structural change of kerogen using 13-C NMR, Appl. Geochem. 3:441–453.

    Article  CAS  Google Scholar 

  • Tissot, B. P., and Welte, D. H., 1978, Petroleum Formation and Occurrence, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Van de Meent, D., Brown, S. C., Philp, R. P., and Simoneit, B. R. T., 1980a, Pyrolysis high resolution gas chromatography and pyrolysis-gas chromatography mass spectrometry of kerogen precursors, Geochim. Cosmochim. Acta 44:999–1014.

    Article  Google Scholar 

  • van de Meent, D., de Leeuw, J. W., and Schenck, P. A., 1980b, Chemical characterisation of non-volatile organics in suspended matter and sediments of the Rhine River delta, J. Anal. Appl. Pyrolysis 2:249–263.

    Article  Google Scholar 

  • Van Graas, G., de Leeuw, J. W., and Schenck, P. A., 1980, Analysis of coals of different rank by Curie point pyrolysis-gas chromatography and Curie point pyrolysis-mass spectrometry, in: Advances in Organic Geochemistry 1979 (A. G. Douglas and J. R. Maxwell, eds.), Pergamon Press, Oxford, pp. 485–497.

    Google Scholar 

  • Van Graas, G., de Leeuw, J. W., Schenck, P. A., and Haverkamp, J., 1981, Kerogen of Toarcian shales of the Paris Basin. A study of its maturation by flash pyrolysis techniques, Geochim. Cosmochim. Acta 45:2465–2474.

    Article  Google Scholar 

  • Wilson, M. A., 1987, NMR Techniques and Applications in Geochemistry and Soil Chemistry, Pergamon Press, Oxford.

    Google Scholar 

  • Yarzab, R. F., Abdel-Basset, Z., and Given, P. H., 1979, Hydroxyl contents of coals, Geochim. Cosmochim. Acta 43:281–287.

    Article  CAS  Google Scholar 

  • Zilm, K. W., Pugmire, R. J., Larter, S. R., Allan, J., and Grant, D. M., 1981, Carbon-13 CP/MAS spectroscopy of coal macerais, Fuel 60:717–722.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Larter, S.R., Horsfield, B. (1993). Determination of Structural Components of Kerogens by the Use of Analytical Pyrolysis Methods. In: Engel, M.H., Macko, S.A. (eds) Organic Geochemistry. Topics in Geobiology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2890-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2890-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6252-4

  • Online ISBN: 978-1-4615-2890-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics