Antigenicity of Soybean Protease Inhibitors

  • David L. Brandon
  • Anne H. Bates
  • Mendel Friedman

Abstract

Trypsin inhibitors (TIs) constitute at least 6% of the protein of soybeans (Ryan, 1973). In addition to their beneficial effects elaborated upon in this volume, high levels of protease inhibitors have both antinutritional and toxicological effects (reviewed by Gallaher and Schneeman, 1984; Rackis and Gumbmann, 1981). In the rat, dietary protease inhibitors can induce the development of pancreatic acinar cell adenoma, but the mechanistic basis, involving cholecystokinin, appears not to operate in other species, including humans (see Chapter 18). Accurate measurement of specific protease inhibitors will be important to define the human dietary exposure to protease inhibitors in epidemiological studies. Such studies should elucidate the role of protease inhibitors in preventing breast, colon, and prostatic cancer, as well as their potential contribution to human pancreatic cancer (see Chapters 1 and 18).

Keywords

Carbohydrate Adenoma Glycine Electrophoresis Acidity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birk, Y., 1985, The Bowman-Birk inhibitor, Int. J. Peptide Protein Res. 25:113–131.CrossRefGoogle Scholar
  2. Brandon, D. L., and Bates, A. H., 1988, Definition of functional and antibody-binding sites on Kunitz soybean trypsin inhibitor isoforms using monoclonal antibodies, J. Agric. Food Chem. 36:1336–1341.CrossRefGoogle Scholar
  3. Brandon, D. L., Bates, A. H., Friedman, M., and Corse, J. W., 1986a, Monitoring nutritional and toxicological changes in processed foods using monoclonal antibodies, in: Food Processing, Online International, New York, pp. 27–37.Google Scholar
  4. Brandon, D. L., Haque, S., and Friedman, M., 1986b, Antigenicity of native and modified Kunitz soybean trypsin inhibitors, in: Nutritional and Toxicological Significance of Enzyme Inhibitors in Foods (M. Friedman, ed.), Plenum Press, New York, pp. 449–467.CrossRefGoogle Scholar
  5. Brandon, D. L., Bates, A. H., and Friedman, M., 1987a, Immunoassays for measuring beneficial and adverse changes in food proteins, in: Biotech USA 1987, Online International, New York, pp. 308–317.Google Scholar
  6. Brandon, D. L., Haque, S., and Friedman, M., 1987b, Interaction of monoclonal antibodies with soybean trypsin inhibitors, J. Agric. Food Chem. 35:195–200.CrossRefGoogle Scholar
  7. Brandon, D. L., Bates, A. H., and Friedman, M., 1988, Enzyme-linked immunoassay of soybean Kunitz trypsin inhibitor using monoclonal antibodies, J. Food Sci. 53:97–101.CrossRefGoogle Scholar
  8. Brandort, D. L., Bates, A. H., and Friedman, M., 1989, Monoclonal antibody-based enzyme immunoassay of the Bowman-Birk protease inhibitor of soybeans, J. Agric. Food Chem. 37:1192–1196.CrossRefGoogle Scholar
  9. Brandon, D. L., Bates, A. H., and Friedman, M., 1990, Monoclonal antibodies to soybean Kunitz trypsin inhibitor and immunoassay methods, U.S. Patent No. 4, 959, 310.Google Scholar
  10. Brandon, D. L., Bates, A. H., and Friedman, M., 1991a, ELISA analysis of soybean trypsin inhibitors in processed foods, in: Nutritional and Toxicological Consequences of Food Processing (M. Friedman, ed.), Plenum Press, New York, pp. 321–337.Google Scholar
  11. Brandon, D. L., Bates, A. H., and Friedman, M., 1991b, High affinity monoclonal antibodies to Bowman-Birk inhibitor and immunoassay methods, U.S. Patent No. 5, 053, 327.Google Scholar
  12. Catsimpoolas, N., and Leuthner, E., 1969, Immunochemical methods for detection and quantitation of Kunitz soybean trypsin inhibitor, Anal. Biochem. 31:437–447.PubMedCrossRefGoogle Scholar
  13. Catsimpoolas, N., Rogers, D. A., and Meyer, E. W., 1969, Immunochemical and disc electrophoresis study of soybean trypsin inhibitor SBTIA-2, Cereal Chem. 46:136–144.Google Scholar
  14. Dierks, S. E., Butler, J. E., and Richerson, H. B., 1986, Altered recognition of surface adsorbed compared to antigen-bound antibodies in the ELISA, Mol. Immunol. 23:403–411.PubMedCrossRefGoogle Scholar
  15. DiPietro, C. M., 1987, Heat stability and occurrence of the Kunitz and Bowman-Birk soybean protease inhibitors in soybean products: Quantitation with enzymatic and immunochemical techniques, Dissertation, University of Minnesota.Google Scholar
  16. DiPietro, C. M., and Liener, I. E., 1989, Heat inactivation of the Kunitz and Bowman-Birk soybean protease inhibitors, J. Agric. Food Chem. 37:39–44.CrossRefGoogle Scholar
  17. Domagalski, J. M., Kollipara, K. P., Bates, A. H., Brandon, D. L., Friedman, M., and Hymowitz, T., 1992, Nulls for the major soybean Bowman-Birk protease inhibitor in the genus Glycine, Crop Sci. 32:1502–1505.CrossRefGoogle Scholar
  18. Finney, D. J., 1964, Statistical Method in Biological Assay, Hafner, New York.Google Scholar
  19. Freed, R. C., and Ryan, D. S., 1978a, Changes in Kunitz trypsin inhibitors during germination of soybeans: An immunoelectrophoresis assay system, J. Food Sci. 43:1316–1319.CrossRefGoogle Scholar
  20. Freed, R. C., and Ryan, D. S., 1978b, Note on modification of the Kunitz soybean trypsin inhibitor during seed germination, Cereal Chem. 55:534–538.Google Scholar
  21. Freed, R. C., and Ryan, D. S., 1980, Isolation and characterization of genetic variants of the Kunitz soybean trypsin inhibitor, Biochim. Biophys. Acta 624:562–572.PubMedCrossRefGoogle Scholar
  22. Friedman, M., and Gumbmann, M. R., 1986, Nutritional improvement of legumes through disulfide interchange, in: Nutritional and Toxicological Significance of Enzyme Inhibitors in Foods (M. Friedman, ed.), Plenum Press, New York, pp. 357–389.CrossRefGoogle Scholar
  23. Friedman, M., Grosjean, O. K., and Zahnley, J. C., 1982, Inactivation of soya bean trypsin inhibitor by thiols, J. Sci. Food Agric. 33:165–172.PubMedCrossRefGoogle Scholar
  24. Friedman, M., Levin, C. E., and Noma, A. T., 1984, Factors governing lysinoalanine formation in soy proteins, J. Food Sci. 49:1282–1288.CrossRefGoogle Scholar
  25. Friedman, M., Gumbmann, M. R., and Brandon, D. L., 1988, Nutritional, toxicological, and immunological consequences of food processing, Front. Gastrointest. Res. 14:79–90.Google Scholar
  26. Friedman, M., Gumbmann, M. R., Brandon, D. L., and Bates, A. H., 1989, Inactivation and analysis of soybean inhibitors of digestive enzymes, in: Food Proteins (J. E. Kinsella and W. G. Soucie, eds.), American Oil Chemists’ Society, Champaign, 111., pp. 296–328.Google Scholar
  27. Friedman, M., Brandon, D. L., Bates, A. H., and Hymowitz, T., 1991, Comparison of a commercial soybean cultivar and an isoline lacking the Kunitz trypsin inhibitor: Composition, nutritional value, and effects of heating, J. Agric. Food Chem. 39:327–335.CrossRefGoogle Scholar
  28. Gallaher, D., and Schneeman, B. O., 1984, Nutritional and metabolic response to plant inhibitors of digestive enzymes, in: Nutritional and Toxicological Aspects of Food Safety (M. Friedman, ed.), Plenum Press, New York, pp. 299–320.CrossRefGoogle Scholar
  29. Gould, D. H., and MacGregor, J. T., 1977, Biological effects of alkali-treated protein and lysinoalanine: An overview, in: Protein Crosslinking: Nutritional and Medical Consequences (M. Friedman, ed.), Plenum Press, New York, pp. 29–48.Google Scholar
  30. Guesdon, J. L., Ternynck, T., and Avrameas, S., 1979, The use of avidin-biotin interaction in immunoenzymatic techniques, J. Histochem. Cytochem. 27:1131–1139.PubMedCrossRefGoogle Scholar
  31. Haiti, P. N., Tan-Wilson, A. L., and Wilson, K. A., 1986, Proteolysis of Kunitz soybean trypsin inhibitor during germination, Phytochemistry 25:23–26.Google Scholar
  32. Hathcock, J. N., 1991, Residue trypsin inhibitor: Data needs for risk assessment, in: Nutritional and Toxicological Consequences of Food Processing (M. Friedman, ed.), Plenum Press, New York, pp. 273–279.Google Scholar
  33. Horisberger, M., and Tacchini-Vonlanthen, M, 1983a, Ultrastructural localization of Kunitz inhibitors on thin sections of Glycine max (soybean) cv. Maple Arrow by the gold method, Histochemistry 77:37–50.PubMedCrossRefGoogle Scholar
  34. Horisberger, M., and Tacchini-Vonlanthen, M., 1983b, Ultrastructural localization of Bowman-Birk inhibitor on thin sections of Glycine max (soybean) cv. Maple Arrow by the gold method, Histochemistry 77:313–321.PubMedCrossRefGoogle Scholar
  35. Hwang, D. L. R., Lin, K. T. D., Yang, W. K., and Foard, D. E., 1977, Purification, partial characterization, and immunological relationships of multiple low molecular weight protease inhibitors of soybean, Biochim. Biophys. Acta 495:369–382.PubMedCrossRefGoogle Scholar
  36. Hymowitz, T., 1986, Genetics and breeding of soybeans lacking the Kunitz trypsin inhibitor, in: Nutritional and Toxicological Significance of Enzyme Inhibitors in Foods (M. Friedman, ed.), Plenum Press, New York, pp. 291–298.CrossRefGoogle Scholar
  37. Hymowitz, T., and Hadley, H. H., 1972, Inheritance of a trypsin inhibitor variant in seed protein of soybeans, Crop Sci. 12:197–198.CrossRefGoogle Scholar
  38. Kim, S., Hara, S., Hase, S., Ikenaka, T., Toda, H., Kitamura, K., and Kaizuma, N., 1985, Comparative study on amino acid sequences of Kunitz-type soybean trypsin inhibitors, Tia, Tib, and Tic, J. Biochem. 98:435–448.PubMedGoogle Scholar
  39. Koide, T., and Ikenaka, T., 1973a, Studies on soybean trypsin inhibitors. 1. Fragmentation of soybean trypsin inhibitor (Kunitz) by limited proteolysis and by chemical cleavage, Eur. J. Biochem. 32:401–407.PubMedCrossRefGoogle Scholar
  40. Koide, T., and Ikenaka, T., 1973b, Studies on soybean trypsin inhibitors. 3. Amino-acid sequence of the carboxyl-terminal region and the complete amino-acid sequence of soybean trypsin inhibitor (Kunitz), Eur. J. Biochem. 32:417–431.PubMedCrossRefGoogle Scholar
  41. Koide, T., Tsunasawa, S., and Ikenaka, T., 1973, Studies on soybean trypsin inhibitors. 2. Aminoacid sequence around the reactive site of soybean trypsin inhibitor (Kunitz), Eur. J. Biochem. 32:408–416.PubMedCrossRefGoogle Scholar
  42. Kunitz, M., 1947, Crystalline soybean trypsin inhibitor. II. General properties, J. Exp. Med. 30:291–310.Google Scholar
  43. Lehnhardt, W. L., and Dills, H. G., 1984, Analysis of trypsin inhibitors in soy products, J. Am. Oil Chem. Soc. 61:691.Google Scholar
  44. Liener, E. I., and Tomlinson, S., 1981, Heat inactivation of protease inhibitors in a soybean line lacking Kunitz trypsin inhibitor, J. Food Sci. 46:1354–1356.CrossRefGoogle Scholar
  45. Moroz, L. A., and Yang, W. H., 1980, A specific allergen in food anaphylaxis, N. Engl. J. Med. 302:1126–1128.PubMedCrossRefGoogle Scholar
  46. Nakane, P. K., and Kawaoi, A., 1974, Peroxidase-labeled antibody. A new method of conjugation, J. Histochem. Cytochem. 22:1084–1091.PubMedCrossRefGoogle Scholar
  47. Obara, T., and Watanabe, Y., 1971, Heterogeneity of soybean trypsin inhibitors. II. Heat inactivation, Cereal Chem. 48:523–527.Google Scholar
  48. Offir, E., Trop, M., and Birk, Y., 1971, Studies on the antigenicity of trypsin inhibitors from soybeans and lima beans, Isr. J. Chem. 9:17BC–18BC.Google Scholar
  49. Orf, J. H., and Hymowitz, T., 1977, Inheritance of a second trypsin inhibitor variant in seed protein of soybeans, Crop Sci. 17:811–813.CrossRefGoogle Scholar
  50. Orf, J. H., and Hymowitz, T., 1979, Genetics of the Kunitz trypsin inhibitor: An antinutritional factor in soybeans, J. Am. Oil Chem. Soc. 56:722–726.CrossRefGoogle Scholar
  51. Orf, J. H., Mies, D. W., and Hymowitz, T., 1977, Qualitative changes of the Kunitz trypsin inhibitor in soybean seeds during germination as detected by electrophoresis, Bot. Gaz. 138:255–260.CrossRefGoogle Scholar
  52. Oste, R. E., Brandon, D. L., Bates, A. H., and Friedman, M., 1990, Effects of nonenzymatic browning reactions of the Kunitz soybean trypsin inhibitor on its interaction with monoclonal antibodies, J. Agric. Food Chem. 38:258–261.CrossRefGoogle Scholar
  53. Prischmann, J. A., and Hymowitz, T., 1988, Inheritance of double nulls for protein components of soybean seeds, Crop Sci. 28:1010–1012.CrossRefGoogle Scholar
  54. Rackis, J. J., and Gumbmann, M. R., 1981, Protease inhibitors: Physiological properties and nutritional significance, in: Antinutrients and Natural Toxicants in Foods (R. L. Ory, ed.), Food and Nutrition Press, Westport, CT, pp. 203–237.Google Scholar
  55. Rackis, J. J., Wolf, W. J., and Baker, E. C., 1986, Protease inhibitors in plant foods: Content and inactivation, in: Nutritional and Toxicological Significance of Enzyme Inhibitors in Foods (M. Friedman, ed.), Plenum Press, New York, pp. 299–347.CrossRefGoogle Scholar
  56. Rossebo, L., and Nordal, J., 1972, A serological method for the detection of trypsin inhibitor in commercial soy proteins and its use in detecting soy protein addition to raw meat, Z. Lebenst. Unters. Forsch. 147:335–338.CrossRefGoogle Scholar
  57. Ryan, C. A., 1973, Proteolytic enzymes and their inhibitors in plants, Annu. Rev. Plant Physiol. 24:173–196.CrossRefGoogle Scholar
  58. Singh, R. J., Kollipara, K. P., and Hymowitz, T., 1990, Backcross-derived progeny from soybean and Glycine tomentella Hayata intersubgeneric hybrids, Crop Sci. 30:871–874.CrossRefGoogle Scholar
  59. Smirnoff, P., Khalef, S., and Birk, Y, 1976, A trypsin and chymotrypsin inhibitor from chick peas Cicer arietinum, Biochem. J. 157:745–751.PubMedGoogle Scholar
  60. Smith, G. A., and Friedman, M., 1984, Effect of carbohydrates and heat on the amino acid composition and chemically available lysine content of casein, J. Food Sci. 49:817–820, 843.CrossRefGoogle Scholar
  61. Tan-Wilson, A. L., Rightmire, B. R., and Wilson, K. A., 1982, Different rates of metabolism of soybean proteinase inhibitors during germination, Plant Physiol. 70:493–497.PubMedCrossRefGoogle Scholar
  62. Tan-Wilson, A. L., Cosgriff, S. E., Duggan, M. C., Obach, R. S., and Wilson, K., 1985, Bowman-Birk proteinase isoinhibitor complements of soybean strains, J. Agric. Food Chem. 33:389–393.CrossRefGoogle Scholar
  63. Tan-Wilson, A. L., Chen, J. C., Duggan, M. C., Chapman, C., Obach, R. S., and Wilson, K. A., 1987, Soybean Bowman-Birk trypsin isoinhibitors: Classification and report of a glycine-rich trypsin inhibitor class, J. Agric. Food Chem. 35:974–980.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • David L. Brandon
    • 1
  • Anne H. Bates
    • 1
  • Mendel Friedman
    • 1
  1. 1.Western Regional Research Center, Agricultural Research ServiceU.S. Department of AgricultureAlbanyUSA

Personalised recommendations