The Use of Molecular and Biochemical Markers in Crop Evolution Studies

  • Paul Gepts
Part of the Evolutionary Biology book series (EBIO, volume 27)

Abstract

When de Candolle (1882) initiated the study of crop evolution, his major concern was to identify the geographic origin, i.e., the domestication center, of individual crops. In his opinion, the following four types of data would shed light on this question: (1) archaeology; (2) botany; (3) philology or linguistics; and (4) history. Of these four types of data, the first two are the most reliable (Harlan and de Wet, 1973). Archaeological remains attested to the antiquity of the cultivation of a crop in a region compared to other regions devoid of archaeological remains. Botanical arguments referred to the existence in a defined region of a wild-growing form that was sufficiently similar morphologically to the crop that it could represent its ancestral form (or at least the immediate descendant of the ancestral form). The existence of words designating a particular crop, particularly in native languages, was considered a testimony to the relative antiquity of cultivation of the crop. Finally, historical description, such as the treatises of Dioscorides and Theophrastus, the herbals of the 16th and 17th centuries, or descriptions of the New World shortly after the Spanish Conquista by, for example, Cieza de León (1541 –1550) or Acosta (1590), also would provide some evidence toward identifying the area of origin of crops.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acosta, J. De, 1590, Historia natural y moral de las Indias, Juan de León, Sevilla [Modem ed., Valencia Cultural, Valencia, Spain].Google Scholar
  2. Allard, R. W., 1988, Genetic changes associated with the evolution of adaptedness in cultivated plants and their wild relatives, J. Hered. 79:225–238.PubMedGoogle Scholar
  3. Ammerman, A. J., and Cavalli-Sforza, L. L., 1984, The Neolithic Transition and the Genetics of Populations in Europe, Princeton University Press, Princeton, New Jersey.Google Scholar
  4. Anderson, S. M., and McDonald, J. F., 1983, Biochemical and molecular analysis of naturally occurring Adh variants in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA 80:4798–4802.PubMedCrossRefGoogle Scholar
  5. Apuya, N. R., Frazier, B. L., Keim, P., Roth, E. J., and Lark, K. G., 1988, Restriction fragment length polymorphisms as genetic markers in soybean, Glycine max (L.) Merrill, Theor. Appl. Genet. 75:889–901.Google Scholar
  6. Asins, M. J., and Carbonell, E. A., 1986, A comparative study on variability and phylogeny of Triticum species. 2. Interspecific relationships, Theor. Appl. Genet. 72:551–558.CrossRefGoogle Scholar
  7. Baudoin, J. P., 1988, Genetic resources, domestication and evolution of lima bean, Phaseolus lunatus, in: Genetic Resources of Phaseolus Beans (P. Gepts, ed.), pp. 393–407, Kluwer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  8. Beadle, G. W., 1972, The mystery of maize, Field Mus. Nat. Hist. Bull. 43:2–11.Google Scholar
  9. Bliss, F. A., 1980, Common bean, in: Hybridization of Crop Plants (W. R. Fehr and H. H. Hadley, eds.), pp. 273–284, Crop Science Society of America, Madison, Wisconsin.Google Scholar
  10. Bonierbale, M., Plaisted, R. L., and Tanksley, S. D., 1988, RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato, Genetics 120:1095–1103.PubMedGoogle Scholar
  11. Brown, A. H. D., and Munday, J., 1982, Population genetic structure and optimal sampling of landraces of barley from Iran, Genetica 58:85–96.CrossRefGoogle Scholar
  12. Brücher, H., 1988, The wild ancestor of Phaseolus vulgaris in South America, in: Genetic Resources of Phaseolus Beans (P. Gepts, ed.), pp. 185–214, Kluwer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  13. Burkart, A., and Brücher, H., 1953, Phaseolus aborigineus Burkart, die mutmassliche andine Stammform der Kulturbohne, Züchter 23:65–72.Google Scholar
  14. Chang, C., Bowman, J. L., Dejohn, A. W., Lander, E. S., and Meyerowitz, E. M., 1988, Restriction fragment length polymorphism linkage map for Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA 85:6856–6860.CrossRefGoogle Scholar
  15. Chase, C. D., Ortega, V. M., and Vallejos, C. E., 1991, DNA restriction fragment length polymorphisms correlate with isozyme diversity in Phaseolus vulgaris L, Theor. Appl. Genet. 81:806–811.CrossRefGoogle Scholar
  16. Chung, J. H., and Stevenson, E., 1973, Diallel analysis of the genetic variation in some quantitative traits in dry beans, N. Z. J. Agric. Res. 16:223–231.Google Scholar
  17. Cieza De Leon, P. De, 1541–1550, La crónica del Perú, Espasa-Calpe, Madrid.Google Scholar
  18. Clegg, M. T., 1990, Molecular diversity in plant populations, in: Plant Population Genetics, Breeding, and Genetic Resources (A. H. D. Brown, M. T. Clegg, A. L. Kahler and B. S. Weir, eds.), pp. 98–115, Sinauer, Sunderland, Massachusetts.Google Scholar
  19. Clegg, M. T., Brown, A. H. D., and Whitfeld, P. R., 1984, Chloroplast DNA diversity in wild and cultivated barley: Implications for genetic conservation, Genet. Res. 43:339–343.CrossRefGoogle Scholar
  20. Cordesse, F., Second, G., and Delseny, M., 1990, Ribosomal gene spacer length variability in cultivated and wild rice species, Theor. Appl. Genet. 79:81–88.CrossRefGoogle Scholar
  21. Coyne, D. P., 1966, A mutable gene system in Phaseolus vulgaris L., Crop Sci. 6:307–310.CrossRefGoogle Scholar
  22. Coyne, D. P., 1967, Photoperiodism: Inheritance and linkage studies in Phaseolus vulgaris, J. Hered. 58:313–314.Google Scholar
  23. Coyne, J., and Lande, R., 1985, The genetic basis of species differences in plants, Am. Nat. 126:141–145.CrossRefGoogle Scholar
  24. Crow, J. F., and Kimura, M., 1970, An Introduction to Population Genetics Theory, Harper and Row, New York.Google Scholar
  25. Curtis, S. E., and Clegg, M. T., 1984, Molecular evolution of chloroplast DNA sequences, Mol. Biol. Evol. 1:291–301.PubMedGoogle Scholar
  26. Dallas, J. F., 1988, Detection of DNA “fingerprints” of cultivated rice by hybridization with a human minisatellite DNA probe, Proc. Natl. Acad. Sci. USA 85:6831–6835.PubMedCrossRefGoogle Scholar
  27. Dally, A. M., and Second, G., 1990, Chloroplast DNA diversity in wild and cultivated species of rice (genus Oryza, section Oryza). Cladistic-mutation and genetic-distance analysis, Theor. Appl. Genet. 80:209–222.CrossRefGoogle Scholar
  28. Debouck, D. G., 1991, Systematics and morphology, in: Common Beans; Research for Crop Improvement (A. Van Schoonhoven and O. Voysest, eds.), pp. 55–118, CAB, Wallingford, England.Google Scholar
  29. Debouck, D. G., Castillo T., R., and Tohme, J. M., 1989a, Observations of little-known Phaseolus germplasm of Ecuador, Plant Genet. Res. Newsl. 80:15–21.Google Scholar
  30. Debouck, D. G., Maquet, A., and Posso, C. E., 1989b, Biochemical evidence for two different gene pools in lima beans, Annu. Rep. Bean Improv. Coop. 32:58–59.Google Scholar
  31. De Candolle, A., 1882, L’origine des plantes cultivées [The Origin of Cultivated Plants, Appleton, New York].Google Scholar
  32. Delgado Salinas, A., 1985, Systematics of the genus Phaseolus (Leguminosae) in North and Central America, Ph.D. thesis, University of Texas, Austin, Texas.Google Scholar
  33. Delgado Salinas, A., 1988, Variation, taxonomy, domestication, and germplasm potentialities in Phaseolus coccineus. in: Genetic resources of Phaseolus beans (P. Gepts, ed.) pp. 441–463, Kluwer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  34. Delgado Salinas, A., Bonet, A., and Gepts, P., 1988, The wild relative of Phaseolus vulgaris in Middle America, in: Genetic Resources of Phaseolus Beans (P. Gepts, ed.), pp. 163–184, Kluwer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  35. Delseny, M., McGrath, J. M., This, P., Chevre, A. M., and Quiros, C. F., 1990, Ribosomal RNA genes in diploid and amphidiploid Brassica and related species: Organization, polymorphism, and evolution, Genome 33:733–744.CrossRefGoogle Scholar
  36. Dickson, M. H., and Petzoldt, R., 1988, Deleterious effects of white seed due to p gene in beans, J. Am. Soc. Hortic. Sci. 113:111–114.Google Scholar
  37. Doebley, J., 1989, Isozymic evidence and the evolution of crop plants, in: Isozymes in Plant Biology (D. E. Soltis and P. S. Soltis, eds.), pp. 165–169, Dioscorides, Portland, Oregon.CrossRefGoogle Scholar
  38. Doebley, J., 1990, Molecular systematics of Zea (Gramineae), Maydica 35:143–150.Google Scholar
  39. Doebley, J., 1992, Molecular systematics and crop evolution, in: Molecular Systematics of Plants (P. S. Soltis, D. E. Soltis, and J. J. Doyle, eds.), pp. 202–222, Chapman Hall, New York.CrossRefGoogle Scholar
  40. Doebley, J., and Stec, A., 1991, Genetic analysis of the morphological differences between maize and teosinte, Genetics 129:285–295.PubMedGoogle Scholar
  41. Doebley, J. F., Goodman, M. M., and Stuber, C. W., 1984, Isoenzymatic variation in Zea (Gramineae). Syst. Bot. 9:203–218.CrossRefGoogle Scholar
  42. Doebley, J. F., Goodman, M. M., and Stuber, C. W., 1985, Isozyme variation in the races of maize from Mexico. Am. J. Bot. 72:629–639.CrossRefGoogle Scholar
  43. Doebley, J., Renfroe, W., and Blanton, A., 1987, Restriction site variation in the Zea chloroplast genome, Genetics 117:139–147.PubMedGoogle Scholar
  44. Doebley, J. F., Wendel, J. D., Smith, J. S. C., Stuber, C. W., and Goodman, M. M., 1988, The origin of cornbelt maize: The isozyme evidence, Econ. Bot. 42:120–131.CrossRefGoogle Scholar
  45. Doebley, J., Stec, A., Wendel, J., and Edwards, M., 1990, Genetic and morphological analysis of a maize-teosinte F2 population: Implications for the origin of maize, Proc. Natl. Acad. Sci. USA 87:9888–9892.PubMedCrossRefGoogle Scholar
  46. Doyle, J. J., 1988, 5S ribosomal gene variation in the soybean and its progenitor. Theor. Appl. Genet. 75:621–624.CrossRefGoogle Scholar
  47. Doyle, J. J., and Beachy, R. N., 1985, Ribosomal gene variation in soybean (Glycine) and its relatives, Theor. Appl. Genet. 70:369–376.Google Scholar
  48. Duvall, M. R., and Doebley, J. F., 1990, Restriction site variation in the chloroplast genome of Sorghum (Poaceae), Syst. Bot. 15:472–480.CrossRefGoogle Scholar
  49. Duvick, D. N., 1984, Genetic diversity in major farm crops on the farm and in reserve, Econ. Bot. 38:161–178.CrossRefGoogle Scholar
  50. Dvořák, J., 1988, Cytogenetical and molecular inferences about the evolution of wheat, in: 7th International Wheat Genetics Symposium, Vol. 1 (T. E. Miller and R. M. D. Koebner, eds.), pp. 187–192, Institute Plant Science Research, Cambridge, England.Google Scholar
  51. Dvořák, J., and Appels, R., 1982, Genome and nucleotide differentiation in genomes of polyploid Triticum species, Theor. Appl. Genet. 63:349–360.CrossRefGoogle Scholar
  52. Dvořák, J., and Zhang, H.-B., 1990, Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes, Proc. Natl. Acad. Sci. USA 87:9640–9644.PubMedCrossRefGoogle Scholar
  53. Dvořák, J., McGuire, P. E., and Cassidy, B., 1988, Apparent sources of the A genomes of wheat inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences, Genome 30:680–689.CrossRefGoogle Scholar
  54. Endo, T., and Morishima, H., 1983, Rice, in: Isozymes in Plant Genetics and Breeding, Vol. B, (S. D. Tanksley and T. J. Orton, eds.), pp. 129–146, Elsevier, Amsterdam.Google Scholar
  55. Erickson, L. R., N. A., Straus, and Beversdorf, W. D., 1983, Restriction patterns reveal origins of chloroplast genomes in Brassica amphiploids. Theor. Appl. Genet. 65:201–206.CrossRefGoogle Scholar
  56. Evans, A. M., 1976, Beans, in: Evolution of Crop Plants (N. W. Simmonds, ed.), pp. 168–172, Longman, London.Google Scholar
  57. Evans, A. M., 1980, Structure, variation, evolution, and classification in Phaseolus, 347. in: Advances in Legume Science. (R. J. Summerfield and A. H. Bunting eds.), pp. 337–347, Royal Botanic Gardens, Kew, England.Google Scholar
  58. Figdore, S., Kennard, W. C., Song, K. M., Slocum, M. K., and Osborn, T. C., 1988, Assessment of the degree of restriction fragment length polymorphism in Brassica, Theor. Appl. Genet. 75:833–840.Google Scholar
  59. Fisher, R. A., 1958, The genetical theory of natural selection. Dover, New York.Google Scholar
  60. Furnier, G., Cummings, M. P., and Clegg, M. T., 1990, Evolution of the avocados as revealed by DNA restriction fragment variation, J. Hered. 81:183–188.Google Scholar
  61. Galinat, W. C., 1971, The origin of maize, Annu. Rev. Genet. 5:447–478.PubMedCrossRefGoogle Scholar
  62. Gayler, K. R., and Sykes, G. E., 1985, Effect of nutritional stress on the storage proteins of soybeans, Plant Physiol. 78:582–585.PubMedCrossRefGoogle Scholar
  63. Gepts, P., 1988, Phaseolin as an evolutionary marker, in: Genetic Resources of Phaseolus Beans (P. Gepts, ed.), pp. 215–241, Kluwer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  64. Gepts, P., 1990, Genetic diversity of seed storage proteins in plants, in: Plant Population Genetics, Breeding, and Genetic Resources (A. H. D. Brown, M. T. Clegg, A. L. Kahler, and B. S. Weir, eds.), pp. 64–68, Sinauer, Sunderland, Massachusetts.Google Scholar
  65. Gepts, P., and Bliss, F. A., 1985, F1 hybrid weakness in the common bean: Differential geographic origin suggests two gene pools in cultivated bean germplasm, J. Hered. 76:447–450.Google Scholar
  66. Gepts, P., and Bliss, F. A., 1986, Phaseolin variability among wild and cultivated common beans (Phaseolus vulgaris) from Colombia, Econ. Bot. 40:469–478.CrossRefGoogle Scholar
  67. Gepts, P., and Bliss, F. A., 1988, Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. II. Europe and Africa, Econ. Bot. 42:86–104.CrossRefGoogle Scholar
  68. Gepts, P., and Clegg, M. T., 1989, Genetic diversity in pearl millet (Pennisetum glaucum [L.] R.Br.) at the DNA sequence level, J. Hered. 80:203–208.Google Scholar
  69. Gepts, P., and Debouck, D. G., 1991, Origin, domestication, and evolution of the common bean, Phaseolus vulgaris, in: Common Beans: Research for Crop Improvement (O. Voysest and A. Van Schoonhoven, eds.), pp. 7–53, CAB, Wallingford, England.Google Scholar
  70. Gepts, P., Osborn, T. C., Rashka, K., and Bliss, F. A., 1986, Phaseolin-protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris): Evidence for multiple centers of domestication, Econ. Bot. 40:451–468.CrossRefGoogle Scholar
  71. Gepts, P., Kmiecik, K., Pereira, P., and Bliss, F. A., 1988, Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. I. The Americas, Econ. Bot. 42:73–85.CrossRefGoogle Scholar
  72. Ghaderi, A., Adams, M. W., and Saettler, A. W., 1982, Environmental response patterns in commercial classes of common bean (Phaseolus vulgaris L.), Theor. Appl. Genet. 63:17–22.CrossRefGoogle Scholar
  73. Glaszmann, J. C., 1987, Isozymes and classification of Asian rice varieties, Theor. Appl. Genet. 74:21–30.CrossRefGoogle Scholar
  74. Gottlieb, L. D., 1984, Genetics and morphological evolution in plants, Am. Nat. 123:681–709.CrossRefGoogle Scholar
  75. Graner, A., Siedler, H., Jahoor, A., Herrmann, R. G., and Wenzel, G., 1990, Assessment of the degree and the type of restriction fragment polymorphism in barley (Hordeum vulgare), Theor. Appl. Genet. 80:826–832.CrossRefGoogle Scholar
  76. Grant, V., 1975, Genetics of Flowering Plants, Columbia University Press, New York.Google Scholar
  77. Graur, D., Bogher, M., and Brieman, A., 1989, Restriction endonuclease profiles of mitochondrial DNA and the origin of the B genome of wheat, Triticum aestivum, Heredity 62:335–342.Google Scholar
  78. Guo, M., Lightfoot, D. A., Mok, M. C., and Mok, D. W. S., 1991, Analyses of Phaseolus vulgaris L. and P. coccineus Lam. hybrids by RFLP: Preferential transmission of P. vulgaris alleles, Theor. Appl. Genet. 81:703–709.CrossRefGoogle Scholar
  79. Halward, T. M., Stalker, H. T., Larue, E. A., and Kodiert, G., 1991, Genetic variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and related wild species, Genome 34:1013–1020.CrossRefGoogle Scholar
  80. Hammer, K., 1984, Das Domestikationssyndrom, Kulturpflanze 32:11–34.CrossRefGoogle Scholar
  81. Hamrick, J. L., and Godt, M. J. W., 1990, Allozyme diversity in plant species, in: Plant Population Genetics, Breeding, and Genetic Resources (A. H. D. Brown, M. T. Clegg, A. L. Kahler, and B. S. Weir, eds.), pp. 43–63, Sinauer, Sunderland, Massachusetts.Google Scholar
  82. Harlan, J. R., 1971, Agricultural origins: Centers and non-centers, Science 174:468–474.PubMedCrossRefGoogle Scholar
  83. Harlan, J. R., 1975, Crops and Man, American Society of Agronomy, Madison, Wisconsin.Google Scholar
  84. Harlan, J. R., and De Wet, J. M. J., 1972, A simple classification of cultivated sorghum, Crop Sci. 12:172–176.CrossRefGoogle Scholar
  85. Harlan, J. R., and De Wet, J. M. J., 1973, On the quality of evidence for origin and dispersal of cultivated plants, Curr. Anthropol. 14:51–62.CrossRefGoogle Scholar
  86. Havey, M. J., and Muehlbauer, F. J., 1989, Variability for restriction fragment lengths and phylogenies in lentil, Theor. Appl Genet. 77:839–843.CrossRefGoogle Scholar
  87. Heiser, C. B., 1965, Cultivated plants and cultural diffusion in nuclear America, Am. Anthropol. 67:930–949.CrossRefGoogle Scholar
  88. Heiser, C. B., 1988, Aspects of unconscious selection and the evolution of domesticated plants. Euphytica 37:77–81.CrossRefGoogle Scholar
  89. Helentjaris, T., King, G., Slocum, M., Siedenstrang, C., and Wegman, S., 1985, Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied plant breeding, Plant Mol. Biol. 5:109–118.CrossRefGoogle Scholar
  90. Hernandez Xolocotzi, E., Miranda Colin, S., and Prwyer, C., 1959, El origen de Phaseolus coccineus L. darwinianus Hernandez X. & Miranda C. subspecies nova, Rev. Soc. Mex. Hist. Nat. 20:99–121.Google Scholar
  91. Heun, M., Kennedy, A. E., Anderson, J. A., Lapitan, N. L. V., Sorrells, M. E., and Tanksley, S. D., 1991, Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgere), Genome 34:437–447.CrossRefGoogle Scholar
  92. Hillman, G. C., and Davies, M. S., 1990, Domestication rates in wild-type wheats and barley under primitive cultivation, Biol. J. Linn. Soc. 39:39–78.CrossRefGoogle Scholar
  93. Hilu, K., 1983, The role of single-gene mutation in the evolution of flowering plants, in: Evolutionary Biology, Vol. 16 (M. K. Hecht, B. Wallace, and G. T. Prance, eds.), pp. 97–128, Plenum Press, New York.CrossRefGoogle Scholar
  94. Hoffman, D. L., Soltis, D. E., Muehlbauer, F. J., and Ladizinsky, G., 1986, Isozyme polymorphism in Lens (Leguminosae), Syst. Bot. 11:392–402.CrossRefGoogle Scholar
  95. Hoffman, L. M., and Donaldson, D. D., 1985, Characterization of two Phaseolus vulgaris phytohemagglutinin genes closely linked on the chromosome, EMBO J. 4:883–889.PubMedGoogle Scholar
  96. Holwerda, B. C., Jana, S., and Crosby, W. L., 1986, Chloroplast and mitochondrial DNA variation in Hordeum vulgare and Hordeum spontaneum, Genetics 114:1271–1291.Google Scholar
  97. Hosaka, K., and Hanneman, R. E., 1988a, Origin of chloroplast DNA diversity in the Andean potatoes, Theor. Appl. Genet. 76:333–340.Google Scholar
  98. Hosaka, K., and Hanneman, R. E., 1988b, The origin of the cultivated tetraploid potato based on chloroplast DNA, Theor. Appl. Genet. 76:172–176.Google Scholar
  99. Hosaka, K., Kianian, S. F., McGrath, J. M., and Quiros, C. F., 1990, Development and chromosomal localization of genome-specific DNA markers of Brassica and the evolution of amphidiploids and n = 9 diploid species, Genome 33:131–142.CrossRefGoogle Scholar
  100. Hutchinson, J. B., 1951, Intra-specific differentiation in Gossypium hirsutum, Heredity 5:161–193.Google Scholar
  101. Iltis, H. H., 1983, From teosinte to maize: The catastrophic sexual transmutation, Science 222:886–894.PubMedCrossRefGoogle Scholar
  102. Jaaska, V., 1980, Electrophoretic survey of seedling esterases in wheats in relation to their phylogeny, Theor. Appl. Genet. 56:273–284.CrossRefGoogle Scholar
  103. Jaaska, V., 1981, Aspartate aminotransferase and alcohol dehydrogenase isoenzymes: Intraspecific differentiation in Aegilops tauschii and the origin of the D genome polyploids in the wheat group, Plant Syst. Evol. 137:259–273.CrossRefGoogle Scholar
  104. Jana, S., and Pietrzak, L., 1988, Comparative assessment of genetic diversity in wild and primitive cultivated barley in a center of diversity, Genetics 119:981–990.PubMedGoogle Scholar
  105. Jørgensen, R. B., 1986, Relationships in the barley genus (Hordeum): an electrophoretic examination of proteins. Hereditas 104:273–291.CrossRefGoogle Scholar
  106. Kahler, A. L., and Allard, R. W., 1981, Worldwide patterns of genetic variation among four esterase loci in barley (Hordeum vulgare L.), Theor. Appl. Genet. 59:101–111.CrossRefGoogle Scholar
  107. Kaplan, L., 1965, Archaeology and domestication in American Phaseolus, Econ. Bot. 19:358–368.CrossRefGoogle Scholar
  108. Keim, P., Shoemaker, R. C., and Palmer, R. G., 1989, Restriction fragment polymorphism diversity in soybean, Theor. Appl. Genet. 77:786–792.CrossRefGoogle Scholar
  109. Kesseli, R., Ochoa, O., and Michelmore, R. W., 1991, Variation at RFLP loci in Lactuca spp. and origin of cultivated lettuce (L. saliva), Genome 34:430–436.CrossRefGoogle Scholar
  110. Khairallah, M. M., Adams, M. W., and Sears, B. B., 1990, Mitochondrial DNA polymorphisms of Malawian bean lines: Further evidence for two major gene pools, Theor. Appl. Genet. 80:753–761.CrossRefGoogle Scholar
  111. Kimura, M., 1983, The Neutral Theory of Molecular Evolution, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  112. Knight, R. L., 1948, The role of major genes in the evolution of economic characters, J. Genet. 48:370–387.PubMedCrossRefGoogle Scholar
  113. Kochert, G., Halward, T., Branch, W. D., and Simpson, C. E., 1991, RFLP variability in peanut (Arachis hypogea L.) cultivars and wild species, Theor. Appl. Genet. 81:565–570.CrossRefGoogle Scholar
  114. Koenig, R., and Gepts, P., 1989a, Segregation and linkage of genes for seed proteins, isozymes, and morphological traits in common bean (Phaseolus vulgaris), J. Hered. 80:455–459.Google Scholar
  115. Koenig, R., and Gepts, P., 1989b, Allozyme diversity in wild Phaseolus vulgaris: Further evidence for two major centers of diversity, Theor. Appl. Genet. 78:809–817.CrossRefGoogle Scholar
  116. Koenig, R., Singh, S. P., and Gepts, P., 1990, Novel phaseolin types in wild and cultivated common bean (Phaseolus vulgaris, Fabaceae), Econ. Bot. 44:50–60.CrossRefGoogle Scholar
  117. Koinange, E. M. K., and Gepts, P., 1992, Hybrid weakness in wild Phaseolus vulgaris L., J. Hered. 83:135–139.Google Scholar
  118. Ladizinsky, G., 1985, Founder effect in cropplant evolution, Econ. Bot. 39:191–198.CrossRefGoogle Scholar
  119. Ladizinsky, G., Braun, D., Goshen, D., and Muehlbauer, F. J., 1984, The biological species of the genus Lens, Bot. Gaz. 145:253–261.CrossRefGoogle Scholar
  120. Lande, R., 1981, The minimum number of genes contributing to quantitative variation between and within populations, Genetics 99:541–553.PubMedGoogle Scholar
  121. Lande, R., 1983, The response to selection on major and minor mutations affecting a metrical trait, Heredity 50:47–65.CrossRefGoogle Scholar
  122. Landry, B. S., Kesseli, R., Leung, H., and Michelmore, R. W., 1987, Comparison of restriction endonucleases and sources of probes for their efficiency in detecting restriction fragment length polymorphisms in lettuce (Lactuca sativa L.), Theor. Appl. Genet. 74:646–653.CrossRefGoogle Scholar
  123. Lyman, J. M., Baudoin, J. P., and Hidalgo, R., 1985, Lima bean, in: Grain Legume Crops (R. H. Summerfield and E. H. Roberts, eds.), pp. 477–519, Collins, London.Google Scholar
  124. Lynch, T., Gonzalez, A., Tohme, J., and Garcia, J., 1992, Variation in characters related to leaf photosynthesis in wild bean populations, Crop Sci. 32:633–640.CrossRefGoogle Scholar
  125. Mackie, J., 1943, Origin, dispersal and variability of the lima bean, Phaseolus lunatus, Hilgardia 15:1–29.Google Scholar
  126. Mangelsdorf, P. C., 1974, Corn: Its Origin, Evolution and Improvement, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  127. Marchais, L., and Pernes, J., 1985, Genetic divergence between wild and cultivated pearl millets (Pennisetum typhoides). I. Male sterility, Z. Pflanzenzüchtg. 95:103–112.Google Scholar
  128. Marchais, L., and Tostain, S., 1985, Genetic divergence between wild and cultivated pearl millets (Pennisetum typhoides). II. Characters of domestication, Z. Pflanzenzüchtg. 95:245–261.Google Scholar
  129. Marechal, R., Mascherpa, J.-M., and Stainier, F., 1978, Etude taxonomique d’un groupe complexe d’espèces des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l’analyse informatique, Boissiera 28:1–273.Google Scholar
  130. McClean, P. E., and Hanson, M. R., 1986, Mitochondrial DNA sequence divergence among Lycopersicon and related Solanum species, Genetics 112:649–667.PubMedGoogle Scholar
  131. McCouch, S. R., Kodiert, G., Yu, Z. Y., Khush, G. S., Coffman, W. R., and Tanksley, S. D., 1988, Molecular mapping of rice chromosomes, Theor. Appl. Genet. 76:815–829.CrossRefGoogle Scholar
  132. McLeod, M. J., Guttman, S. I., and Eshbaugh, W. H., 1982, Early evolution of chili peppers (Capsicum), Econ. Bot. 36:361–368.CrossRefGoogle Scholar
  133. McLeod, M. J., Guttman, S. I., Eshbaugh, W. H., and Rayle, R. E., 1983, An electrophoretic study of evolution in Capsicum (Solanaceae), Evolution 37:562–574.CrossRefGoogle Scholar
  134. Messmer, M. M., Melchinger, A. E., Lee, M., Woodman, W. L., Lee, E. A., and Lamkey, K. R., 1991, Genetic diversity among progenitors and elite lines from the Iowa Stiff Stalk Synthetic (BSSS) maize population: Comparison of allozyme and RFLP data, Theor. Appl. Genet. 83:97–107.CrossRefGoogle Scholar
  135. Miller, J. C., and Tanksley, S. D., 1990, RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon, Theor. Appl. Genet. 80:437–448.Google Scholar
  136. Miranda Colín, S., 1979, Evolucióxn de Phaseolus vulgaris y P. coccineus. in: Contribuciones al Conocimiento del Frijol (Phaseolus) en México. (E. M. Engelman, ed.) pp. 83–99, Colegio de Postgraduados, Chapingo, México.Google Scholar
  137. Morden, C. W., Doebley, J. F., and Schertz, K. F., 1989, Allozyme variation in Old World races of Sorghum bicolor (Poaceae), Am. J. Bot. 76:247–255.CrossRefGoogle Scholar
  138. Moreno, J., and Chrispeels, M. J., 1989, A lectin gene encodes the α-amylase inhibitor of the common bean, Proc. Natl. Acad. Sci. USA 86:7885–7889.PubMedCrossRefGoogle Scholar
  139. Motto, M., Soressi, G. P., and Salamini, F., 1978, Seed size inheritance in a cross between wild and cultivated common beans (Phaseolus vulgaris L.), Genetica 49:31–36.CrossRefGoogle Scholar
  140. Nabhan, G. P., 1985, Native crop diversity in Aridoamerica: Conservation of regional gene pools, Econ. Bot. 39:387–399.CrossRefGoogle Scholar
  141. Nakai, Y., 1981, D genome donors for Aegilops cylindrica (CCDD) and Triticum aestivum (AABBDD) deduced from esterase isozyme analysis. Theor. Appl. Genet. 60:11–16.CrossRefGoogle Scholar
  142. Neale, D. B., Saghai-Maroof, M. A., Allard, R. W., Zhang, Q., and Jorgensen, R. A., 1986, Chloroplast DNA diversity in populations of wild and cultivated barley, Genetics 120:1105–1110.Google Scholar
  143. Nevo, E., Zohary, D., Brown, A. H. D., and Haber, M., 1979, Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Israel, Evolution 33:815–833.CrossRefGoogle Scholar
  144. Nevo, E., Beiles, A., and Zohary, D., 1986, Genetic resources of wild barley in the Near East: Structure, evolution and application in breeding, Biol. J. Linn. Soc. 27:355–380.CrossRefGoogle Scholar
  145. Nienhuis, J., and Singh, S. P., 1988a, Genetics of seed yield and its components in common bean (Phaseolus vulgaris L.) of Middle American origin. II. Genetic variance, heritability, and expected response from selection, Plant Breed. 101:155–163.CrossRefGoogle Scholar
  146. Nienhuis, J., and Singh, S. P., 1988b, Genetics of seed yield and its components in common bean (Phaseolus vulgaris L.) of Middle-American origin. I. General combining ability, Plant Breed. 101:143–154.CrossRefGoogle Scholar
  147. Nodari, R. O., Koinange, E. M. K., Kelly, J. D., and Gepts, P., 1992, Towards an integrated linkage map of common bean. I. Development of genomic DNA probes and levels of restriction fragment length polymorphism, Theor. Appl. Genet. 84:186–192.CrossRefGoogle Scholar
  148. Ogihara, Y., and Tsunewaki, K., 1988, Diversity and evolution of chloroplast DNA in Triticum and Aegilops as revealed by restriction fragment analysis, Theor. Appl. Genet. 76:321–332.CrossRefGoogle Scholar
  149. Oka, H. I., 1958, Intervarietal variation and classification of cultivated rice, Ind. J. Genet. Plant Breed. 18:79–89.Google Scholar
  150. Osborn, T. C., Blake, T., Gepts, P., and Bliss, F. A., 1986, Bean arcelin. 2. Genetic variation, inheritance and linkage relationships of a novel seed protein of Phaseolus vulgaris, Theor. Appl. Genet. 71:847–855.CrossRefGoogle Scholar
  151. Osborn, T. C., Alexander, D. C., Sun, S. S. M., Cardona, C., and Bliss, F. A., 1988, Insecticidal activity and lectin homology of arcelin seed protein, Science 240:207–210.CrossRefGoogle Scholar
  152. Pääbo, S., 1989, Ancient DNA: Extraction, characterization, molecular cloning, and enzymatic amplification, Proc. Natl. Acad. Sci. USA 86:1939–1943.PubMedCrossRefGoogle Scholar
  153. Pääbo, S., Higuchi, R., and Wilson, A. C., 1989, Ancient DNA and the polymerase chain reaction, J. Biol. Chem. 264:9709–9712.PubMedGoogle Scholar
  154. Palmer, J. D., 1987, Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation, Am. Nat. 130:S6–S29.CrossRefGoogle Scholar
  155. Palmer, J. D., 1990, Contrasting modes and tempos of genome evolution in land plant organelles, Trends Genet. 6:115–120.PubMedCrossRefGoogle Scholar
  156. Palmer, J. D., 1992, Mitochondrial DNA in plant systematics: Applications and limitations, in: Molecular Systematics of Plants (P. S. Soltis, D. E. Soltis, and J. J. Doyle, eds.), pp. 36–49, Chapman Hall, New York.CrossRefGoogle Scholar
  157. Palmer, J. D., Shields, C. R., Cohen, D. B., and Orton, T. J., 1983, Chloroplast DNA evolution and the origin of amphidiploid Brassica species, Theor. Appl. Genet. 65:181–189.CrossRefGoogle Scholar
  158. Palmer, J. D., Jorgensen, R. A., and Thompson, W. F., 1985, Chloroplast DNA variation and evolution in Pisum: Patterns of change and phylogenetic analysis, Genetics 109:195–213.PubMedGoogle Scholar
  159. Panella, L., and Gepts, P., 1992, Genetic relationships within Vigna unguiculata (L.) Walp. based on isozyme analyses, Genet. Res. Crop Evol. 39:71–88.Google Scholar
  160. Percy, R. G., and Wendel, J. F., 1990, Allozyme evidence for the origin and diversification of Gossypium barbadense L., Theor. Appl. Genet. 79:529–542.CrossRefGoogle Scholar
  161. Pernès, J., Combes, D., and Leblanc, J. M., 1984, Le mil, in: Gestion des ressources génétiques des plantes, Vol. 1 (J. Pernes, ed.), pp. 159–197, Lavoisier, Paris.Google Scholar
  162. Pickersgill, B., Heiser, C. B., and McNeill, J., 1979, Numerical taxonomy studies on variation and domestication in some species of Capsicum, in: The Biology and Taxonomy of the Solanaceae (J. G. Hawkes, R. N. Lester, and A. D. Skelding, eds.), pp. 679–700, Academic Press, New York.Google Scholar
  163. Pinkas, R., Zamir, D., and Ladizinsky, G., 1985, Allozyme divergence and evolution in the genus Lens, Plant Syst. Evol. 151:131–140.CrossRefGoogle Scholar
  164. Pratt, R. C., and Nabhan, G. P., 1988, Evolution and diversity of Phaseolus acutifolius genetic resources, in: Genetic Resources of Phaseolus Beans (P. Gepts, ed.), pp. 409–440, Kluwer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  165. Rick, C. M., and Fobes, J. F., 1975, Allozyme variation in the cultivated tomato and closely related species, Bull. Torrey Bot. Club 102:376–384.CrossRefGoogle Scholar
  166. Rindos, D., 1984, The Origins of Agriculture, Academic Press, Orlando, Florida.Google Scholar
  167. Robert, T., Lespinasse, R., Pernes, J., and Sarr, A., 1991, Gametophytic competition as influencing gene flow between wild and cultivated forms of pearl millet (Pennisetum typhoides), Genome 34:195–200.CrossRefGoogle Scholar
  168. Rogstad, S. H., Patton II, J. C., and Schaal, B. A., 1988, M13 repeat probe detects DNA minisatellite-like sequences in gymnosperms and angiosperms, Proc. Natl. Acad. Sci. USA 85:9176–9178.PubMedCrossRefGoogle Scholar
  169. Romero-Andreas, J., Yandell, B. S., and Bliss, F. A., 1986, Bean arcelin. 1. Inheritance of a novel seed protein of Phaseolus vulgaris L. and its effect on seed composition, Theor. Appl. Genet. 72:123–128.CrossRefGoogle Scholar
  170. Rüdorf, W., 1959, Genetics of Phaseolus aborigineus, in: Proceedings Xth International Genetics Congress, Vol. 2, p. 243 (Abstract).Google Scholar
  171. Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A., and Allard, R. W., 1984, Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics, Proc. Natl. Acad. Sci. USA 81:8014–8018.PubMedCrossRefGoogle Scholar
  172. Sarkar, P., and Stebbins, G. L., 1956, Morphological evidence concerning the origin of the B genome in wheat, Am. J. Bot. 43:297–304.CrossRefGoogle Scholar
  173. Schinkel, C., and Gepts, P., 1988, Phaseolin diversity in the tepary bean, Phaseolus acutifolius A. Gray. Plant Breed. 101:292–301.CrossRefGoogle Scholar
  174. Schinkel, C., and Gepts, P., 1989, Allozyme variability in the tepary bean, Phaseolus acutifolius A. Gray. Plant Breed. 102:182–195.CrossRefGoogle Scholar
  175. Schmit, V., and Debouck, D. G., 1991, Observations on the origin of Phaseolus polyanthus Greenman, Econ. Bot. 45:345–364.CrossRefGoogle Scholar
  176. Second, G., 1982, Origin of the genetic diversity of cultivated rice (Oryza spp.): Study of the polymorphism scored at 40 enzyme loci, Jpn. J. Genet. 57:25–57.CrossRefGoogle Scholar
  177. Shii, C. T., Mok, M. C., Temple, S. R., and Mok, D. W. S., 1980, Expression of developmental abnormalities in hybrids of Phaseolus vulgaris L., J. Hered. 71:218–222.Google Scholar
  178. Silbernagel, M. J., and Hannan, R. M., 1988, Utilization of genetic resources in the development of commercial bean cultivars in the U.S.A., in: Genetic Resources of Phaseolus Beans (P. Gepts, ed.), pp. 561–596, Kluwer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  179. Singh, S. P., 1991, Bean genetics, in: Common Beans: Research for Crop Improvement (A. Van Schoonhoven and O. Voysest, eds.), pp. 199–286, CAB, Wallingford, England.Google Scholar
  180. Singh, S. P., and Gutiérrez, A. J., 1984, Geographical distribution of the DL1 and DL2 genes causing hybrid dwarfism in Phaseolus vulgaris L., their association with seed size, and their significance to breeding, Euphytica 33:337–345.CrossRefGoogle Scholar
  181. Singh, S. P., Cajiao, C., Gutiérrez, J. A., Garcia, J., Pastor-Corrales, M. A., and Morales, F. J., 1989, Selection for seed yield in inter-gene pool crosses of common bean, Crop Sci. 29:1126–1131.CrossRefGoogle Scholar
  182. Singh, S. P., Gepts, P., and Debouck, D. G., 1991, Races of common bean (Phaseolus vulgaris L., Fabaceae). Econ. Bot. 45:379–396.CrossRefGoogle Scholar
  183. Singh, S. P., Nodari, R., and Gepts, P., 1991a, Genetic diversity in cultivated common bean. I. Allozymes, Crop Sci. 31:19–23.CrossRefGoogle Scholar
  184. Singh, S. P., Gutiérrez, J. A., Molina, A., Urrea, C., and Gepts, P., 1991b, Genetic diversity in cultivated common bean: II. Marker-based analysis of morphological and agronomic traits, Crop Sci. 31:23–29.CrossRefGoogle Scholar
  185. Singh, S. P., Teran, J., Molina, A., and Gutiérrez, J. A., 1991c, Combining ability for seed yield and its components in common bean of Andean origin, Crop Sci. 32:81–84.CrossRefGoogle Scholar
  186. Smartt, J., 1988, Morphological, physiological, and biochemical changes in Phaseolus beans under domestication, in: Genetic Resources of Phaseolus Beans (P. Gepts, ed.), pp. 143–161, Kluwer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  187. Sokal, R. R., 1991, The continental population structure of Europe, Annu. Rev. Anthropol. 20:119–140.CrossRefGoogle Scholar
  188. Sokal, R. R., Oden, N. L., and Wilson, C., 1991, Genetic evidence for the spread of agriculture in Europe by demie diffusion, Nature 351:143–145.PubMedCrossRefGoogle Scholar
  189. Soltis, D. E., Soltis, P. S., and Milligan, B. G., 1992a, Intraspecific chloroplast DNA variation: Systematic and phylogenetic implications, in: Molecular Systematic of Plants (P. S. Soltis, D. E. Soltis, and J. J. Doyle, eds.), pp. 117–150, Chapman Hall, New York.CrossRefGoogle Scholar
  190. Soltis, P. S., Doyle, J. J., and Soltis, D. E., 1992b, Molecular data and polyploid evolution in plants, in: Molecular Systematics of Plants (P. S. Soltis, D. E. Soltis, and J. J. Doyle, eds.), pp. 177–201, Chapman Hall, New York.CrossRefGoogle Scholar
  191. Song, K. M., Osborn, T. C., and Williams, P. H., 1988a, Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 1. Genome evolution of diploid and amphidiploid species, Theor. Appl. Genet. 75:784–794.CrossRefGoogle Scholar
  192. Song, K. M., Osborn, T. C., and Williams, P. H., 1988b, Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 2. Preliminary analysis of subspecies within B. rapa (syn. campestris) and (B. oleracea), Theor. Appl. Genet. 76:593–600.CrossRefGoogle Scholar
  193. Song, K., Osborn, T. C., and Williams, P. H., 1990, Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 3. Genome relationships in Brassica and related genera and the origin of B. Oleracea and B. rapa (syn. campestris). Theor. Appl. Genet. 79:497–506.CrossRefGoogle Scholar
  194. Stockton, T., Sonnante, G., and Gepts, P., 1992, Detection of minisatellite sequences in Phaseolus vulgaris, Plant Mol. Biol. Rep. 10:47–59.CrossRefGoogle Scholar
  195. U, N., 1935, Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization, Jpn. J. Bot. 7:389–452.Google Scholar
  196. Vaillancourt, R. E., and Weeden, N. F., 1992, Chloroplast DNA polymorphism suggests Nigerian center of domestication for the cowpea, Vigna unguiculata, Leguminosae, Am. J. Bot. 79:1194–1199.CrossRefGoogle Scholar
  197. Vaillancourt, R. E., Weeden, N. F., and Barnard, J., 1993, Isozyme diversity in the cowpea species complex (Vigna unguiculata), Crop Sci. in press.Google Scholar
  198. Van Schoonhoven, A., and Cardona, C., 1982, Low levels of resistance to the Mexican bean weevil in dry beans, J. Econ. Entomol. 75:567–569.Google Scholar
  199. Wang, Z. Y., Second, G., and Tanksley, S. D., 1992, Polymorphism and phylogenetic relationships among species in the genus Oryza as determined by analysis of nuclear RFLPs, Theor. Appl. Genet. 83:565–581.CrossRefGoogle Scholar
  200. Warwick, S. I., and Aiken, S. G., 1986, Electrophoretic evidence for the recognition of two species in annual wild rice (Zizania, Poaceae). Syst. Bot. 11:464–473.CrossRefGoogle Scholar
  201. Webster, B. D., Lynch, S. P., and Tucker, C. L., 1979, A morphological study of the development of reproductive structures of Phaseolus lunatus L., J. Am. Soc. Hortic. Sci. 104:240–243.Google Scholar
  202. Webster, B. D., Ross, R. M., and Sigourney, M. C., 1980, A morphological study of the development of reproductive structures of Phaseolus coccineus,J. Am. Soc. Hortic. Sci. 105:825–833.Google Scholar
  203. Weeden, N. F., and Wendel, J. F., 1989, Genetics of plant isozymes, in: Isozymes in Plant Biology (D. E. Soltis and P. S. Soltis, eds.), pp. 46–72, Dioscorides, Portland, Oregon.CrossRefGoogle Scholar
  204. Wellhausen, E. J., Roberts, L. M., and Hernandez X., E., 1952, Races of Maize in Mexico, Bussey Institute, Harvard University, Cambridge, Massachusetts.Google Scholar
  205. Wells, W. C., Isom, W. H., and Waines, J. G., 1988, Outcrossing rates of six common bean lines, Crop Sci. 28:177–178.CrossRefGoogle Scholar
  206. Wendel, J. F., 1989, New World tetraploid cottons contain Old World cytoplasm, Proc. Natl. Acad. Sci. USA 86:4132–4236.PubMedCrossRefGoogle Scholar
  207. Wendel, J. F., and Weeden, N. F., 1989, Visualization and interpretation of plant isozymes, in: Isozymes in Plant Biology (D. E. Soltis and P. S. Soltis, eds.), pp. 5–45, Dioscorides, Portland, Oregon.CrossRefGoogle Scholar
  208. Wendel, J. F., Olson, P. D., and Stewart, J. McD., 1989, Genetic diversity, introgression, and independent domestication of Old World cultivated cottons, Am. J. Bot. 76:1795–1806.CrossRefGoogle Scholar
  209. Wendel, J. F., Brubaker, C. L., and Percival, A. E., 1992, Genetic diversity in Gossypium hirsutum and the origin of Upland cotton, Am. J. Bot. 79:1291–1310.CrossRefGoogle Scholar
  210. White, J. W., Montes, C., and Mendoza, L. Y., 1992, Use of grafting to characterize and alleviate hybrid dwarfness in common bean, Euphytica 59:19–25.Google Scholar
  211. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V., 1990, DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Res. 18:6531–6535.PubMedCrossRefGoogle Scholar
  212. Wolfe, K. H., Li, W.-H., and Sharp, P. M., 1987, Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs, Proc. Natl. Acad. Sci. USA 84:9054–9058.PubMedCrossRefGoogle Scholar
  213. Zhang, Q., Saghai Maroof, M. A., Lu, T. Y., and Shen, B. Z., 1992, Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis, Theor. Appl. Genet. 83:495–499.Google Scholar
  214. Zimmer, E. A., Jupe, E. R., and Walbot, V., 1988, Ribosomal gene structure, variation, and inheritance in maize and its ancestors, Genetics 120:1125–1136.PubMedGoogle Scholar
  215. Zurawski, G., and Clegg, M. T., 1987, Evolution of higher plant chloroplast DNA-encoded genes: Implications for structure-function and phylogenetic studies, Annu. Rev. Plant Physiol. 38:391–418.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Paul Gepts
    • 1
  1. 1.Department of Agronomy and Range ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations