Advertisement

Activation and Relaxation Mechanisms in Single Muscle Fibres

  • C. C. Ashley
  • T. J. Lea
  • I. P. Mulligan
  • R. E. Palmer
  • S. J. Simnett
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 332)

Abstract

The effect of Ca2+ on the time course of force generation in frog skinned muscle fibres has been investigated using laser flash photolysis of the caged-calcium, either nitr-5 or DM-Nitrophen. Gradations in the rate and extent of contraction could be achieved by changing the energy of the laser pulse, which varied the amount of caged Ca2+ photolysed and hence the amount of calcium released. The half-time for force development at 12°C was noticeably calcium-sensitive when small amounts of calcium were released (low energy pulses) but did not change appreciably for calcium releases which produced a final tension of more than 50% of the maximal tension at pCa 4.5. This result is unlikely to be due to calcium binding to the regulatory sites of troponin C when on the thin filament, as this process is considered rapid (kon 108 M-1 s-1, koff 100 s-1). Our experimental results show that force develops relatively rapidly at intermediate Ca2+ which produce only partial activation (i.e. 50% Pmax or greater). This would not be the case if the affinity of the regulatory sites changes slowly with crossbridge attachment. The kinetics of calcium exchange with the regulatory sites may be much more rapid than crossbridge cycling, so that if calcium binding to a particular functional unit induces crossbridge attachment and force production, the force producing state may be maintained long after calcium has dissociated from that particular functional unit. The relaxation of skinned muscle fibres has also been successfully studied following the rapid uptake of Ca2+ by a photolabile chelator Diazo-2, a photolabile derivative of BAPTA, which is rapidly (> 2000 s-1) converted from a chelator of low Ca2+ affinity (Kd 2.2 μM) to a high affinity chelator (Kd 0.073 μM). We have used single skinned muscle fibres from both frog (actin regulated) and scallop striated muscle (myosin regulated), to study the time course of muscle relaxation. This procedure has enabled us to examine the effects of the intracellular metabolites, ADP, Pi and H+ upon the rate of relaxation. Single skinned muscle fibres from the semitendinosis muscle of the frog Rana temporaria to relax with a mean half-time of 56.0 ± 4.1 ms (range 30–100 ms, n = 18) at 12°C, which is faster than the relaxation observed in the intact muscles (half-time 133 ms at 14°C) and similar to the rate of the fast phase of tension decay in intact single fibres (20 s-1 at 10°C). Thé presence of 6.3 mM free ADP led to an increase in the mean half time of relaxation to 123 ± 8 ms (n = 7).

Keywords

Calcium Binding Force Development Regulatory Site Thin Filament Laser Flash Photolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashley, C.C. & Moisescu, D.G. J. Physiol. (Lond.) 233, 8–9P (1973).Google Scholar
  2. 2.
    Moisescu, D.G. Nature 262, 610–613 (1976).PubMedCrossRefGoogle Scholar
  3. 3.
    Ashley, C.C, Mulligan, I.P. & Lea, T.J. Q. Rev. Biophys. 24, 1–73 (1991).PubMedCrossRefGoogle Scholar
  4. 4.
    Shimomura, O., Johnson, F.H. & Saiga, Y. J. Cell Comp. Physiol. 59, 223–239 (1962).PubMedCrossRefGoogle Scholar
  5. 5.
    Ridgway, E.B. & Ashley, C.C. Biochem. Biophys. Res. Commun. 29, 229–233 (1967).PubMedCrossRefGoogle Scholar
  6. 6.
    Ashley, C.C. & Ridgway, E.B. J. Physiol. (Lond.) 209, 105–130 (1970).Google Scholar
  7. 7.
    Ashley, C.C. & Moisescu, D.G. Nature (New Biol) 237, 208–211 (1972).Google Scholar
  8. 8.
    Johnson, J.D., Collins, J.H. & Potter, J.D. J. Biol. Chem. 253, 6451–6458 (1978).PubMedGoogle Scholar
  9. 9.
    Johnson, J.D., Charlton, S.C. & Potter, J.D. J. Biol. Chem. 254, 3497–3502 (1979).PubMedGoogle Scholar
  10. 10.
    Rosenfeld, S.S. & Taylor, E.W. J. Biol. Chem. 260, 242–251 (1985).PubMedGoogle Scholar
  11. 11.
    Hess, P., Metzger, P. & Weingart, R. J. Physiol. (Lond.) 329, 173–188 (1982).Google Scholar
  12. 12.
    Robertson, S.P., Johnson, J.D. & Potter, J.D. Biophys. J. 34, 559–569 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    Gillis, J.M., Thomason, D., Lefevre, J. & Kretsinger, R.H. J. Muscle Res. Cell Motility 3, 377–398 (1982).CrossRefGoogle Scholar
  14. 14.
    Natori, R. Jikeikai Med. J. 1, 119–126 (1954).Google Scholar
  15. 15.
    Hellam, D.C. & Podolsky, R.J. J. Physiol. (Lond.) 200, 807–819 (1969).Google Scholar
  16. 16.
    Julian, F.J. J. Physiol. (Lond.) 218, 117–145 (1971).Google Scholar
  17. 17.
    Ashley, C.C. & Moisescu, D.G. in Calcium Transport in Contraction and Secretion (ed. Carafoli, E. et al.) 517–525 (North Holland, Amsterdam, 1975).Google Scholar
  18. 18.
    Endo, M. Cold Spring Harbor Symp. Quant. Biol. 37, 505–510 (1973).CrossRefGoogle Scholar
  19. 19.
    Ashley, C.C. Ann. N.Y. Acad. Sci. 307, 308–329 (1978).PubMedCrossRefGoogle Scholar
  20. 20.
    Ashley, C.C. in Calcium in Biology (ed. Spiro, T.) 109–173 (Wiley, New York, 1983).Google Scholar
  21. 21.
    Engels, J. & Schlaeger, E.J. J. Med. Chem. 20, 907–911 (1977).PubMedCrossRefGoogle Scholar
  22. 22.
    Kaplan, J.H., Forbush, B. & Hoffman, J.F. Biochemistry 17, 1929–1935 (1978).PubMedCrossRefGoogle Scholar
  23. 23.
    Goldman, Y.E., Hibberd, M.G., McCray, J. & Trentham, D.R. Nature 300, 701–705 (1982).PubMedCrossRefGoogle Scholar
  24. 24.
    Adams, S.J., Kao, J.P.Y. & Tsien, R.Y. J. Gen. Physiol. 88, 9–10a (1986).Google Scholar
  25. 25.
    Adams, S.J., Kao, J.P.Y., Grynkiewicz, G. Minta, A. & Tsien, R.Y. J. Am. Chem. Soc. 110, 3212–3220 (1988).CrossRefGoogle Scholar
  26. 26.
    Kaplan, J.H. & Ellis-Davies, G.C.R. Proc. Natl. Acad. Sci. USA. 85, 6571–6575 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    Ellis-Davies, G.C.R. & Kaplan, J.H. J. Org. Chem. 53, 1966–1969 (1988).CrossRefGoogle Scholar
  28. 28.
    Tsien, R.Y. Biochemistry 19, 2396–2404 (1980).PubMedCrossRefGoogle Scholar
  29. 29.
    Gurney, A.M., Tsien, R.Y. & Lester, H.A. Proc. Natl Acad. Sci. USA. 84, 3496–3500 (1987).PubMedCrossRefGoogle Scholar
  30. 30.
    Ashley, C.C, Barsotti, R.J., Ferenczi, M.A., Lea, T.J. & Mulligan, I.P. J. Physiol. (Lond.) 394, 24P (1987a).Google Scholar
  31. 31.
    Ashley, C.C, Barsotti, R.J., Ferenczi, M.A., Lea, T.J., Mulligan, I.P. & Tsien, R.Y. J. Physiol. (Lond.) 390, 144P (1987b).Google Scholar
  32. 32.
    Ashley, C.C, Barsotti, R.J., Ferenczi, M.A., Lea, T.J. & Mulligan, I.P. J. Physiol. (Lond.) 398, 71P (1988).Google Scholar
  33. 33.
    Ashley, C.C, Barsotti, R.J., Ferenczi, M.A., Lea, T.J. & Mulligan, I.P. in Biochemical Approaches to Cellular Calcium (ed. Reid, E.) 19, 131–132 (Royal Society of Chemistry, London, 1989).Google Scholar
  34. 34.
    Ashley, C.C, Lea, T.J., Mulligan, I.P. & Timmerman, M.P. J. Physiol. (Lond.) 414, 50P.Google Scholar
  35. 35.
    Lea, T.J., Fenton, M.J., Potter, J.D. & Ashley, C.C. Biochim. Biophys. Acta. 1034, 186–194 (1990).PubMedCrossRefGoogle Scholar
  36. 36.
    Kress, M., Huxley, H.E., Faruqi, A.R. & Hendrix, J. J. Mol. Biol. 188, 325–342 (1986).PubMedCrossRefGoogle Scholar
  37. 37.
    Griffiths, P.J., Duchateau, J.J., Maeda, Y., Potter, J.D. & Ashley, C.C. Pflügers Arch. 415, 554–565 (1990).PubMedCrossRefGoogle Scholar
  38. 38.
    Johnson, J.D., Robinson, D.E., Robertson, J.D., Schwartz, A. & Potter, J.D. in The Regulation of Muscle Contraction: E-C coupling (ed. Grinnel, A.D.) 241–259 (Academic Press, New York, 1981).Google Scholar
  39. 39.
    Griffiths, P.J., Potter, J.D., Coles, B., Strang, P. & Ashley, C.C. FEBS Lett. 176, 144–150 (1984).PubMedCrossRefGoogle Scholar
  40. 40.
    Hill, T.L. Biophys. J. 44, 383–396 (1983).PubMedCrossRefGoogle Scholar
  41. 41.
    Binder, K. in Topics in Current Physics Vol.11. (Springer Verlag, Berlin, 1983).Google Scholar
  42. 42.
    Binder, K. in Topics in Current Physics Vol.7 (2nd edition). (Springer Verlag, Berlin, 1986).Google Scholar
  43. 43.
    Kalos, M.H. & Whitlock, P.A. Monte Carlo Methods. (Wiley, New York, 1986).CrossRefGoogle Scholar
  44. 44.
    Chen, Y.D. & Hill, T.L. Proc. Natl. Acad. Sci. USA. 80, 7520–7523 (1983).PubMedCrossRefGoogle Scholar
  45. 45.
    Brandt, P.W., Diamond, M.S. & Rutchik, J.S. J. Mol. Biol. 195, 885–896 (1987).PubMedCrossRefGoogle Scholar
  46. 46.
    Bremel, R.D. & Weber, A. Nature (New Biol.) 238, 97–101 (1972).Google Scholar
  47. 47.
    Pan, B.S. & Solaro, R.J. J. Biol. Chem. 262, 7839–7849 (1987).PubMedGoogle Scholar
  48. 48.
    Wnuk, W., Schoechlin, M. & Stein, E.A. J. Biol. Chem. 259, 9017–9023 (1984).PubMedGoogle Scholar
  49. 49.
    Güth, K. & Potter, J.D. J. Biol. Chem. 262, 13627–13655 (1987).PubMedGoogle Scholar
  50. 50.
    Brandt, P.W., Cox, R.N., Kawai, M. & Robinson, T. J. Gen. Physiol. 79, 997–1016 (1982)PubMedCrossRefGoogle Scholar
  51. 51.
    Fuchs, F. J. Muscle Res. Cell Motility 6, 477–486 (1985).CrossRefGoogle Scholar
  52. 52.
    Cecchi, G., Griffiths, P.J. & Taylor, S.R. Adv. Exp. Biol. Med. 170, 455–466 (1984).CrossRefGoogle Scholar
  53. 53.
    Harootunian, A.T., Kao, J.Y.P. & Tsien, R.Y. Cold Spring Harbor Symp. Quant.Biol. 53, 935–943 (1988).PubMedCrossRefGoogle Scholar
  54. 54.
    Adams, S.R., Kao, J.P.Y. & Tsien, R.Y. J. Am. Chem. Soc. 111, 7957–7968 (1989).CrossRefGoogle Scholar
  55. 55.
    Mulligan, I.P. & Ashley, C.C. FEBS Lett. 255, 196–200 (1989).PubMedCrossRefGoogle Scholar
  56. 56.
    Ashley, C.C, Mulligan, I.P. & Palmer, R.E. J. Physiol. (Lond.) 426, 31P (1990).Google Scholar
  57. 57.
    Mulligan, I.P., Adams, S.R., Tsien, R.Y., Potter, J.D. & Ashley, C.C. Biophys. J. 57, 541; (1990).Google Scholar
  58. 58.
    Palmer, R.E., Mulligan, I.P., Nunn, C. & Ashley, C.C. Biochem. Biophys. Res. Commun. 168, 295–300 (1990).PubMedCrossRefGoogle Scholar
  59. 59.
    Palmer, R.E., Simnett, S.J., Mulligan, I.P. & Ashley, C.C. Biochem. Biophys. Res. Commun. 181, 1337–1342 (1992)CrossRefGoogle Scholar
  60. 60.
    Fabiato, A. Am. J. Physiol. 245, C1–C4 (1983).PubMedGoogle Scholar
  61. 61.
    Fabiato, A. Biophys. J. 97, 195a (1985).Google Scholar
  62. 62.
    Endo, M., Tanaka, M. & Ogawa, Y. Nature 228, 34–36 (1970).PubMedCrossRefGoogle Scholar
  63. 63.
    Ford, L.E. & Podolsky, R.J. Science 167, 58–59.Google Scholar
  64. 64.
    Endo, M. Physiol. Rev. 57, 71–108 (1977).PubMedGoogle Scholar
  65. 65.
    Baylor, S.M., Hollingworth, S. & Marshall, M.W. J. Physiol. (Lond.) 344, 625–666 (1983)Google Scholar
  66. 66.
    McClesky, E.W. J. Physiol. (Lond.) 361, 231–249 (1985).Google Scholar
  67. 67.
    Brum, G., Stephani, E. & Rios, E. Can. J. Physiol. Pharmacol. 65, 681–685 (1986).CrossRefGoogle Scholar
  68. 68.
    Lea, TJ. & Ashley, C.C. J. Physiol. (Lond.) 427, 435–453 (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • C. C. Ashley
    • 1
  • T. J. Lea
    • 1
  • I. P. Mulligan
    • 1
  • R. E. Palmer
    • 1
  • S. J. Simnett
    • 1
  1. 1.University Laboratory of PhysiologyOxfordEngland

Personalised recommendations