Skip to main content

Influence of Ionic Strength on Contractile Force and Energy Consumption of Skinned Fibers From Mammalian and Crustacean Striated Muscle

  • Chapter
Mechanism of Myofilament Sliding in Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 332))

Abstract

Increased ionic strength decreases maximal calcium-activated force (Fmax) of skinned muscle fibers via mechanisms that are incompletely understood. In detergent-skinned fibers from either rabbit (psoas) or lobster (leg or abdomen), Fmax in KCl-containing solutions was less than in potassium methanesulfonate (KMeSO3), which we showed previously was the least deleterious salt for adjusting ionic strength. In either salt, lobster fibers were considerably less sensitive to elevated ionic strength than rabbit fibers. Trimethylamine N-oxide (TMAO, a zwitterionic osmolyte found in high concentration in cells of salt-tolerant animals) increased Fmax, especially in high KC1 solutions. In this regard, TMAO was more effective than a variety of other natural or synthetic zwitterions. In rabbit fibers, increasing ionic strength decreases Fmax but has little effect on contractile ATPase rate measured simultaneously using a linked-enzyme assay. Thus high salt increases the tension-cost of contraction (i.e. ratio ATPase/Fmax). At both high and low salt, TMAO decreases tension-cost. Given a simple two-state model of the cross-bridge cycle, these data indicate that ionic strength and TMAO affect the apparent detachment rate constant. High ionic strength KC1 solutions extract myosin heavy and light-chains, and troponin C from rabbit fibers. This extraction is virtually abolished by TMAO. Natural zwitterions, such as TMAO, have been shown to protect proteins against destabilization by high salt or other denaturatants. Our data indicate that, even in the best of salts, destabilization of the actomyosin complex may play a role in the effect of high ionic strength on the contractile process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brenner, B., Schoenberg, M., Chalovich, J.M. & Greene, L.E. Proc. Natl. Acad. Sci. USA 79, 7288–7291 (1982).

    Article  PubMed  CAS  Google Scholar 

  2. Hodgkin, A.L. & Horowicz, P. J. Physiol. (Lond.) 136, 17p (1957).

    Google Scholar 

  3. Gordon, A.M. & Godt, R.E. J. Gen. Physiol. 55, 254–275 (1970).

    Article  PubMed  CAS  Google Scholar 

  4. Howarth, J.V. J. Physiol. (Lond.) 144, 167–175 (1958).

    CAS  Google Scholar 

  5. Gordon, A.M., Godt, R.E., Donaldson, S.K.B. & Harris, C.E. J. Gen. Physiol. 62, 550–574 (1973).

    Article  PubMed  CAS  Google Scholar 

  6. Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D. & Somero, G.N. Science 217, 1214–1222 (1982).

    Article  PubMed  CAS  Google Scholar 

  7. Hochachka, P.W. & Somero, G.N. Biochemical Adaptation pp. 305–354 (Princeton University Press, Princeton, 1984).

    Google Scholar 

  8. Andrews, M.A., Martyn, D.A., Fogaca, R.T.H. & Godt, R.E. Biophys. J. 59, 45a (1991).(Abstract)

    Google Scholar 

  9. Fogaca, R.T.H., Andrews, M.A. & Godt, R.E. Biophys. J. 57, 546a (1990).(Abstract)

    Google Scholar 

  10. Andrews, M.A.W., Maughan, D.W., Nosek, T.M. & Godt, R.E. J. Gen. Physiol. 98, 1–21 (1991).

    Article  Google Scholar 

  11. Godt, R E. & Lindley, B.D. J. Gen. Physiol. 80, 279–297 (1982).

    Article  PubMed  CAS  Google Scholar 

  12. Giith, K. & Wojciechowski, R. Pflügers Arch. 407, 552–557 (1986).

    Article  Google Scholar 

  13. Manchester, K.L. Biochem. Biophys. Acta 630, 225–231 (1980).

    Article  PubMed  CAS  Google Scholar 

  14. Wold, F., & Ballou, C.E. J. Biol. Chem. 227, 301–328 (1957).

    PubMed  CAS  Google Scholar 

  15. Switzer, R.C. III, Merril, C.R. & Shifrin, S. Analyt. Biochem. 98, 231–237 (1979).

    Article  PubMed  CAS  Google Scholar 

  16. April, E.W. & Brandt, P.W. J. Gen. Physiol. 61, 490–508 (1973).

    Article  PubMed  CAS  Google Scholar 

  17. Thames, M.D., Teichholz, L.E. & Podolsky, R.J. J. Gen. Physiol. 63, 509–530 (1974).

    Article  PubMed  CAS  Google Scholar 

  18. Gulati, J. & Podolsky, R.J. J. Gen. Physiol. 72, 701–716 (1978).

    Article  PubMed  CAS  Google Scholar 

  19. Kawai, M. in Basic Biology of Muscles: A Comparative Approach (eds. Twarog, B.M., Levine, R.J.C. & Dewey, M.M.) 109–130 (Raven Press, New York, 1982).

    Google Scholar 

  20. Schoenberg, M. Biophys. J. 54, 135–148 (1988).

    Article  PubMed  CAS  Google Scholar 

  21. Kawai, M., Wray, J.S. & Güth, K. J. Muscle. Res. Cell Motility. 11, 392–402 (1990).

    Article  CAS  Google Scholar 

  22. Brenner, B. in Molecular Mechanisms in Muscular Contraction (ed. Squire, J.M.), pp. 77–149 (CRC Press, Inc., Boca Raton, 1990).

    Google Scholar 

  23. Geeves, M.A. & Goldmann, W.H. Biochem. Soc. Trans. 18, 584–585 (1990).

    PubMed  CAS  Google Scholar 

  24. Geeves, M.A. Biochem. J. 274, 1–14 (1991).

    PubMed  CAS  Google Scholar 

  25. Ashley, C.C. & Moisescu, D.G. J. Physiol. (Lond.) 270, 627–652 (1977).

    CAS  Google Scholar 

  26. April, E.W., Brandt, P.W. & Elliott, G.F. J. Cell Biol. 53, 53–65 (1972).

    Article  PubMed  CAS  Google Scholar 

  27. Godt, R.E. & Maughan, D.W. Biophys. J. 19, 103–116 (1977).

    Article  PubMed  CAS  Google Scholar 

  28. Matsubara, I., Umazume, Y. & Yagi, N. J. Physiol. (Lond.) 360, 135–184 (1985).

    CAS  Google Scholar 

  29. Highsmith, S. Arch. Biochem. Biophys. 180, 404–408 (1977).

    Article  PubMed  CAS  Google Scholar 

  30. Moos, C. Cold Spring Harbor Symposium of Quantitative Biology 37, 137–143 (1973).

    Article  CAS  Google Scholar 

  31. Jacobs, H.K. & Guthe, K.F. Arch. Biochem. Biophys. 136, 36–40 (1970).

    Article  PubMed  CAS  Google Scholar 

  32. Altringham, J.D., Yancey, P.H. & Johnston, I.A. J. Exp. Biol. 96, 443–445 (1982).

    CAS  Google Scholar 

  33. Timasheff, S. & Arakawa, T. in Protein Structure & Function: A Practical Approach (ed. Creighton, T.E.) 331–345 (IRL Press, Oxford, 1989).

    Google Scholar 

  34. Arakawa, T. & Timasheff, S.N. Biophys. J. 47, 411–414 (1985).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Godt, R.E., Fogaça, R.T.H., Andrews, M.A.W., Nosek, T.M. (1993). Influence of Ionic Strength on Contractile Force and Energy Consumption of Skinned Fibers From Mammalian and Crustacean Striated Muscle. In: Sugi, H., Pollack, G.H. (eds) Mechanism of Myofilament Sliding in Muscle Contraction. Advances in Experimental Medicine and Biology, vol 332. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2872-2_67

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2872-2_67

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6245-6

  • Online ISBN: 978-1-4615-2872-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics