Determinants of Velocity of Sarcomere Shortening in Mammalian Myocardium

  • Henk EDJ ter Keurs
  • Pieter P. de Tombe
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 332)

Abstract

Maximal unloaded velocity of shortening of cardiac muscle (Vo) depends on the level of activation of the contractile filaments. We have tested the hypothesis that this dependence may be caused by viscous resistance of the muscle to length changes.

Twitch force (Fo) and sarcomere shortening were studied in trabeculae dissected from the right ventricle of rat myocardium, superfused with modified Krebs-Henseleit solution at 25°C. Sarcomere length (SL) was measured by laser diffraction techniques; force was measured by a silicon strain gauge; velocity of sarcomere shortening was measured using the “isovelocity release” technique.

Vo and Fo at slack SL were a sigmoidal function of [Ca2+]o, but Vo was more sensitive to [Ca2+]o (Km: 0.44 ± 0.04 mM) than isometric twitch force (Km: 0.68 ± 0.03 mM). At [Ca2+]o = 1.5 mM, Vo was independent of SL above 1.9 μm, but depended on SL at lower [Ca2+]o and always depended on SL < 1.9 μm. A constant relation was observed between Vo and Fo, irrespective whether Fo was altered by variation of [Ca2+]o or SL above slack length.

Visco-elastic properties of unstimulated muscles were studied at SL = 2.0 μm by small linear length changes at varied velocities up to 40 μm/s. The force response to stretch, after correction for the contribution of static parallel elasticity, consisted of an exponential increase of force (T = 4 ms) and an exponential decline after the stretch. This response would be expected from an arrangement of a viscous element in series with an elastic element. Viscous force increased in proportion to stretch velocity by 0.2– 0.5% of Fo/μm/s up to 15 μm/s, while the calculated stiffness of the elastic component was 25–45 N.mm-3, suggesting that the most likely structural candidate for this visco-elastic element is titin. Dynamic stiffness at 500 Hz was proportional to instantaneous force during shortening and was 12% of stiffness at maximal twitch force when shortening occurred at Vo. This suggests that the number of active force generators, even at maximal activation, is strongly reduced during shortening at Vo.

The observed relation between Vo and Fo could be explained by a model in which shortening velocity of the cardiac sarcomere depends on the level of activation and hence on the number of cross bridges supporting the viscous load.

Keywords

Platinum Cardiol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Podolin, R.A. & Ford, L.E. J. Muscle Res. Cell Motility 4, 263–282 (1983).CrossRefGoogle Scholar
  2. 2.
    Daniels, M., Noble, M.I.M., ter Keurs, H.E.DJ. & Wohlfart, B. J. Physiol. (Lond.) 355, 367–381 (1984).Google Scholar
  3. 3.
    Edman, K.A.P. J. Physiol. (Lond.) 291, 143–159 (1979).Google Scholar
  4. 4.
    ter Keurs, H.E.D.J., Rijnsburger, W.H., van Heuningen, R. & Nagelsmit, M.J. Circ. Res. 46, 703–714 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    Kentish, J.C., ter Kerus, H.E.DJ., Ricciardi, L., Bucx, J.J.J. & Noble, M.I.M. Circ. Res. 580, 755–768 (1986).CrossRefGoogle Scholar
  6. 6.
    de Tombe, P.P., Backx, P.H.M. & ter Keurs, H.E.D.J. Circulation 78, II-68, (Abstract) (1988).Google Scholar
  7. 7.
    de Tombe, P.P. & ter Keurs, H.E.D.J. Circ. Res. 66, 1239–1254 (1990c).PubMedCrossRefGoogle Scholar
  8. 8.
    Hill, A.V. Proc. R. Soc. B 126, 136–195 (1938).CrossRefGoogle Scholar
  9. 9.
    de Tombe, P.P. & ter Keurs, H.E.D.J. Circ. Res. 68, 382–391 (1991a).PubMedCrossRefGoogle Scholar
  10. 10.
    ter Keurs, H.E.D.J., de Tombe, P.P., Backx, P.H.M. & Iwazumi, T. Biorheology 28, 161–170 (1991).PubMedGoogle Scholar
  11. 11.
    de Tombe, P.P. & ter Keurs, H.E.D.J. Circ. Res. 68, 588–596 (1991b).PubMedCrossRefGoogle Scholar
  12. 12.
    Allen, D.G. & Kentish, J.C. J. Mol. Cell. Cardiol. 17, 821–840 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    Hofmann, P.A. & Fuchs, F. J. Mol. Cell. Cardiol. 20, 667–677 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    Gulati, J. & Babu, A. J. Gen. Physiol. 86, 479–500 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    Chiu, Y.L., Ballou, E.W. & Ford, L.E. Circ. Res. 60, 446–458 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    Tsuchiya, T. Biophys. J. 53, 415–423 (1988).PubMedCrossRefGoogle Scholar
  17. 17.
    Chiu, Y.L., Ballou, E.W. & Ford, L.E. Biophys. J. 40, 109–120 (1982a).PubMedCrossRefGoogle Scholar
  18. 18.
    Noble, M.I.M. Circ. Res. 40, 288–292 (1977).PubMedCrossRefGoogle Scholar
  19. 19.
    Ford, L.E., Huxley, A.F. & Simmons, R.M. J. Physiol. (Lond.) 269, 441–515 (1977).Google Scholar
  20. 20.
    de Tombe, PP. & ter Keurs, H.E.D.J. J. Physiol. (Lond.) (submitted).Google Scholar
  21. 21.
    Ford, L.E., Huxley, A.F. & Simmons, R.M. J. Physiol. (Lond.) 361, 131–150 (1985).Google Scholar
  22. 22.
    Julian, F.J. & Sollins, M.R. J. Gen. Physiol. 66, 287–302 (1975).PubMedCrossRefGoogle Scholar
  23. 23.
    Julian, F.J. & Morgan, D.L. J. Physiol. (Lond.) 319, 193–203 (1981).Google Scholar
  24. 24.
    Ford, L.E., Huxley, A.F. & Simmons, R.M. J. Physiol. (Lond.) 311, 219–249 (1981).Google Scholar
  25. 25.
    Haugen, P. In: Molecular Mechanism of Muscle Contraction, (eds. Sugi, H. & Pollack, G.H.) 461–469 (Plenum Press, 1988).Google Scholar
  26. 26.
    Chiu, Y.L., Ballou, E.W. & Ford, L.E. Biophys. J. 40, 121–128 (1982b).PubMedCrossRefGoogle Scholar
  27. 27.
    Sonnenblick, E.H. Circ. Res. 16, 441–451 (1965).PubMedCrossRefGoogle Scholar
  28. 28.
    Brutsaert, D.L., Claes, V.A. & Sonnenblick, E.H. Circ. Res. 29, 63–75 (1971).PubMedCrossRefGoogle Scholar
  29. 29.
    Martyn, D.A., Rondinone, J.F. & Huntsman, L.L. Am. J. Physiol. 244, H708–H714 (1983).PubMedGoogle Scholar
  30. 30.
    Brenner, B.M., Schoenberg, M., Chalovich, J.M., Greene, L.E. & Eisenberg, E. Proc. Natl. Acad. Sci. 79, 7288–7291 (1982).PubMedCrossRefGoogle Scholar
  31. 31.
    Backx P.H. & ter Keurs H.E.D.J. Circulation 78 68 (1988).CrossRefGoogle Scholar
  32. 32.
    Wang, K. & Wright, J. The J. Cell Biol. 107, 2199–2212 (1988).CrossRefGoogle Scholar
  33. 33.
    Brady, A.J. Physiol. Rev. 71, 413–428 (1991).PubMedGoogle Scholar
  34. 34.
    Fabiato, A. J. Gen. Physiol. 78, 457–497 (1981).PubMedCrossRefGoogle Scholar
  35. 35.
    Schouten, V.J.A., Bucx, J.J.J., de Tombe, P.P. & ter Keurs, H.E.D.J. Circ. Res. 67, 913–922 (1990).PubMedCrossRefGoogle Scholar
  36. 36.
    Huxley, A.F. Prog. Biophys. Biophys. Chem. 7, 255–318 (1957).PubMedGoogle Scholar
  37. 37.
    Weber, A. & Murray, J.M. Physiol. Rev. 53, 612–673 (1973).PubMedGoogle Scholar
  38. 38.
    Woledge, R.C., Curtin, N.A. & Homsher, E. Energetic Aspects of Muscle Contraction. (Academic Press, London, 1985).Google Scholar
  39. 39.
    Morimoto, K. & Harrington, W.F. J. Mol. Biol. 88, 693–709 (1974).PubMedCrossRefGoogle Scholar
  40. 40.
    Haselgrove, J.C. J. Mol. Biol. 92, 113–143 (1975).PubMedCrossRefGoogle Scholar
  41. 41.
    Lehman, W. Nature 274, 80–81 (1978).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Henk EDJ ter Keurs
    • 1
  • Pieter P. de Tombe
    • 1
  1. 1.The University of Calgary Health Sciences CentreCalgaryCanada

Personalised recommendations